Exposure to mercury and thyroid function: Is there a connection?

  • Djurdjica Marić University of Belgrade – Faculty of Pharmacy, Department of Toxicology “Akademik Danilo Soldatović”
  • Vera Bonderović University of Belgrade – Faculty of Pharmacy, Department of Toxicology “Akademik Danilo Soldatović”
  • Dragana Javorac University of Belgrade – Faculty of Pharmacy, Department of Toxicology “Akademik Danilo Soldatović”
  • Katarina Baralić University of Belgrade – Faculty of Pharmacy, Department of Toxicology “Akademik Danilo Soldatović”
  • Zorica Bulat University of Belgrade – Faculty of Pharmacy, Department of Toxicology “Akademik Danilo Soldatović”
  • Danijela Djukić-Ćosić University of Belgrade – Faculty of Pharmacy, Department of Toxicology “Akademik Danilo Soldatović”
  • Stefan Mandić-Rajčević University of Belgrade – Faculty of Medicine, Institute of Social Medicine
  • Miloš Žarković Department of Endocrinology, Diabetes and Metabolic Diseases
  • Aleksandra Buha Djordjević University of Belgrade – Faculty of Pharmacy, Department of Toxicology “Akademik Danilo Soldatović”
Keywords: endocrine disruption, mercury, thyroid function, BMD concept, nearest neighbor matching

Abstract


Mercury (Hg) is one of the most important environmental pollutants with endocrine-disrupting properties. There is little data from epidemiological studies describing the dose-response relationship between toxic metal levels and hormone levels. The aim of this study was to use the nearest neighbor matching analysis to determine the difference in Hg concentration in healthy/sick subjects with thyroid disease and to use Benchmark modeling to determine the dose-response relationship between Hg levels in the blood and thyroid-stimulating hormone (TSH) and thyroid hormones in serum. Blood samples were collected and used for Hg measurement using the ICP-MS method, and separated serum was used for hormone analysis. The study showed the existence of a statistically significant difference in Hg levels measured in healthy and sick subjects and the existence of a dose-response relationship between Hg and all measured hormones, with a narrow interval obtained for the Hg-TSH pair. The results of this research support the use of the Benchmark dose approach for the purpose of analyzing data from human studies, and our further research will be focused on examining the impact of low doses on animal models in order to determine more precise effects of low doses on the organism.

References

style='font-size:12.0pt;font-family:"Times New Roman","serif";mso-no-proof:

yes'>ADDIN

Mendeley Bibliography CSL_BIBLIOGRAPHY 1.        WHO 2020 [Internet] WHO2020: Ten chemicals of major public health concern [cited 2022 Jul 12]. Available from:  https://www.who.int/news-room/photo-story/photo-story-detail/10-chemicals-of-public-health-concern.

2.        Shi Q, Sun N, Kou H, Wang H, Zhao H. Chronic effects of mercury on Bufo gargarizans larvae: Thyroid disruption, liver damage, oxidative stress and lipid metabolism disorder. Ecotoxicol Environ Saf. 2018;164:500–9.

3.        Parks JM, Johs A, Podar M, Bridou R, Hurt RA., Smith SD, et al. The Genetic Basis for Bacterial Mercury Methylation. Science. 2013;339(6125):1332–5.

4.        Harada M. Minamata Disease: Methylmercury Poisoning in Japan Caused by Environmental Pollution. Crit Rev Toxicol. 1995;25(1):1–24.

5.        Bakir F, Damluji SF, Amin-Zaki L, Murtadha M, Khalidi A, Al-Rawi N Y, et al. Methylmercury Poisoning in Iraq. Science. 1973;181(4096):230–41.

6.        Fernandes Azevedo B, Barros Furieri L, Peçanha FMI, Wiggers GA, Frizera Vassallo P, Ronacher Simões M, et al. Toxic effects of mercury on the cardiovascular and central nervous systems. J Biomed Biotechnol. doi: 10.1155/2012/949048

7.        Rice KM, Walker EM, Wu M, Gillette C, Blough ER. Environmental mercury and its toxic effects. J Prev Med Public Heal. 2014;47(2):74–83.

8.        Ha E, Basu N, Bose-O’Reilly S, Dórea JG, McSorley E, Sakamoto M, et al. Current progress on understanding the impact of mercury on human health. Environ Res. 2017;152: 419-433.

9.        Henriques MC, Loureiro S, Fardilha M, Herdeiro MT. Exposure to mercury and human reproductive health: A systematic review. Reprod Toxicol. 2019;85:93–103.

10.      Jeon J, Morris JS, Park K. Toenail mercury levels positively correlate with obesity and abdominal obesity among Korean adults. J Trace Elem Med Biol. 2021;64:126678.

11.      Tsai TL, Kuo CC, Pan WH, Wu TN, Lin P, Wang SL. Type 2 diabetes occurrence and mercury exposure – From the National Nutrition and Health Survey in Taiwan. Environ Int. 2019;126:260–7.

12.      Pamphlett R, Kum Jew S, Doble PA, Bishop DP. Mercury in the human adrenal medulla could contribute to increased plasma noradrenaline in aging. Sci Rep. 2021;11(1):1–14.

13.      Mondal S, Raja K, Schweizer U, Mugesh G. Chemistry and Biology in the Biosynthesis and Action of Thyroid Hormones. Angew Chemie - Int Ed. 2016;55(27):7606–30.

14.      Brent GA. Mechanisms of thyroid hormone action. J Clin Invest. 2012;122(9):3035–43.

15.      Taylor PN, Albrecht D, Scholz A, Gutierrez-Buey G, Lazarus JH, Dayan CM, et al. Global epidemiology of hyperthyroidism and hypothyroidism. Nat Rev Endocrinol. 2018;14(5):301–16.

16.      Chang CH, Yeh YC, Caffrey JL, Shih SR, Chuang LM, Tu YK. Metabolic syndrome is associated with an increased incidence of subclinical hypothyroidism - A Cohort Study. Sci Rep. 2017;7(1):1–8.

17.      Delitala AP. Subclinical Hyperthyroidism and the Cardiovascular Disease. Horm Metab Res. 2017;49(10):723–31.

18.      Roman BR, Morris LG, Davies L. The thyroid cancer epidemic, 2017 perspective. Curr Opin Endocrinol Diabetes Obes. 2017;24(5):332–6.

19.      Khan R, Ali S, Mumtaz S, Andleeb S, Ulhaq M, Tahir HM, et al. Toxicological effects of toxic metals (cadmium and mercury) on blood and the thyroid gland and pharmacological intervention by vitamin C in rabbits. Environ Sci Pollut Res. 2019;26(16):16727–41.

20.      Rana SVS. Perspectives in endocrine toxicity of heavy metals - A review. Biol Trace Elem Res. 2014;160(1):1–14.

21.      Rao MV, Chhunchha B. Protective role of melatonin against the mercury induced oxidative stress in the rat thyroid. Food Chem Toxicol. 2010;48(1):7–10.

22.      Chen A, Kim SS, Chung E, Dietrich KN. Thyroid hormones in relation to lead, mercury, and cadmium exposure in the national health and nutrition examination survey, 2007-2008. Environ Health Perspect. 2013;121(2):181–6.

23.      Mori K, Yoshida K, Tani JI, Hoshikawa S, Ito S, Watanabe C. Methylmercury inhibits type II 5′-deiodinase activity in NB41A3 neuroblastoma cells. Toxicol Lett. 2006;161(2):96–101.

24.      Pamphlett R, Doble PA, Bishop DP. Mercury in the human thyroid gland: Potential implications for thyroid cancer, autoimmune thyroiditis, and hypothyroidism. PLoS One. 2021;16. doi: 10.1371/journal.pone.0246748

25.      Ellingsen DG, Efskind J, Haug E, Thomassen Y, Martinsen I, Gaarder PI. Effects of low mercury vapour exposure on the thyroid function in chloralkali workers. J Appl Toxicol. 2000;20(6):483–9.

26.      Hardy A, Benford D, Halldorsson T, Jeger MJ, Knutsen KH, More S, et al. Update: use of the benchmark dose approach in risk assessment. EFSA J. 2017;15(1):1–41.

27.      Haber LT, Dourson ML, Allen BC, Hertzberg RC, Parker A, Vincent MJ, et al. Benchmark dose (BMD) modeling: current practice, issues, and challenges. Crit Rev Toxicol. 2018;48(5):387–415.

28.      Djordjevic AB, Anđelković M, Kačavenda E, Javorac D, Antonijević-Miljaković E, Marić Đ, et al. Cadmium levels in human breast tissue and estradiol serum levels: Is there a connection? Arh Farm. 2021;71(6):581–95.

29.      Baralić K, Javorac D, Marić Đ, Đukić-Ćosić D, Bulat Z, Antonijević Miljaković E, et al. Benchmark dose approach in investigating the relationship between blood metal levels and reproductive hormones: Data set from human study. Environ Int. 2022;165:107313.

30.      Goumenou M, Djordjevic Buha A, Vassilopoulou L, Tsatsakis MA. Endocrine disruption and human health risk assessment in the light of real-life risk simulation. In: Toxicological Risk Assessment and Multi-System Health Impacts from Exposure, editor: Aristidis Tsatsakis, Academic Press USA; 2021; p. 147–62.

31.      Zakrison TL, Austin PC, McCredie VA. A systematic review of propensity score methods in the acute care surgery literature: avoiding the pitfalls and proposing a set of reporting guidelines. Eur J Trauma Emerg Surg. 2018;44(3):385–95.

32.      Thoemmes FJ, Kim ES. A systematic review of propensity score methods in the Social sciences. Multivariate Behav Res. 2011;46(1):90–118.

33.      Vieira Silva A, Chu I, Feeley M, Bergman Å, Håkansson H, Öberg M. Dose-dependent toxicological effects in rats following a 90-day dietary exposure to PCB-156 include retinoid disruption. Reprod Toxicol. 2022;107:123–39.

34.      Abu-Khudir R, Larrivée-Vanier S, Wasserman JD, Deladoëy J. Disorders of thyroid morphogenesis. Best Pract Res Clin Endocrinol Metab. 2017;31(2):143–59.

35.      Iijima K, Otake T, Yoshinaga J, Ikegami M, Suzuki E, Naruse H, et al. Cadmium, lead, and selenium in cord blood and thyroid hormone status of newborns. Biol Trace Elem Res. 2007;119(1):10–8.

36.      Buha A, Antonijević B, Bulat Z, Jaćević V, Milovanović V, Matović V. The impact of prolonged cadmium exposure and co-exposure with polychlorinated biphenyls on thyroid function in rats. Toxicol Lett. 2013;221(2):83–90.

37.      Rezaei M, Javadmoosavi SY, Mansouri B, Azadi NA, Mehrpour O, Nakhaee S. Thyroid dysfunction: how concentration of toxic and essential elements contribute to risk of hypothyroidism, hyperthyroidism, and thyroid cancer. Environ Sci Pollut Res. 2019;26(35):35787–96.

38.      Hu Q, Han X, Dong G, Yan W, Wang X, Bigambo FM, et al. Association between mercury exposure and thyroid hormones levels: A meta-analysis. Environ Res. 2021;196:1–9.

39.      Yorita Christensen KL. Metals in blood and urine, and thyroid function among adults in the United States 2007-2008. Int J Hyg Environ Health. 2013;216(6):624–32.

40.      Wang J, Cao LL, Gao ZY, Zhang H, Liu JX, Wang SS, et al. Relationship between thyroid hormone parameters and exposure to a mixture of organochlorine pesticides, mercury and nutrients in the cord blood of newborns. Environ Pollut. 2022;292:118362. Available from: https://doi.org/10.1016/j.envpol.2021.118362>

41.      Jain RB, Choi YS. Interacting effects of selected trace and toxic metals on thyroid function. Int J Environ Health Res. 2016;26(1):75–91.

42.      Afrifa J, Ogbordjor WD, Duku-Takyi R. Variation in thyroid hormone levels is associated with elevated blood mercury levels among artisanal small-scale miners in Ghana. PLoS One. 2018;13(8):1–11.

43.      Llop S, Lopez-Espinosa MJ, Murcia M, Alvarez-Pedrerol M, Vioque J, Aguinagalde X, et al. Synergism between exposure to mercury and use of iodine supplements on thyroid hormones in pregnant women. Environ Res. 2015;138:298–305.

44.      Abdelouahab N, Mergler D, Takser L, Vanier C, St-Jean M, Baldwin M, et al. Gender differences in the effects of organochlorines, mercury, and lead on thyroid hormone levels in lakeside communities of Quebec (Canada). Environ Res. 2008;107(3):380–92.

font-family:"Times New Roman","serif";mso-fareast-font-family:Calibri;

mso-fareast-theme-font:minor-latin;mso-ansi-language:EN-US;mso-fareast-language:

EN-US;mso-bidi-language:AR-SA;mso-no-proof:yes'>

45.      Lin T, Xiao-Ting L, Ai G, Qiu-Ying L, Tai-Yi J. Application of benchmark dose for occupational epidemiology in lead exposure. Toxicol Mech Methods. 2008;18(4):363–7.

Published
2022/10/31
Section
Original scientific paper