Resource management in HPLC: Unveiling a green face of pharmaceutical analysis

  • Jevrem Stojanović University of Belgrade – Faculty of Pharmacy, Department of Drug Analysis
  • Jovana Krmar University of Belgrade – Faculty of Pharmacy, Department of Drug Analysis
  • Biljana Otašević University of Belgrade – Faculty of Pharmacy, Department of Drug Analysis
  • Ana Protić University of Belgrade – Faculty of Pharmacy, Department of Drug Analysis
Keywords: High-performance liquid chromatography, greenness assessment, sustainability

Abstract


High-pressure liquid chromatography (HPLC) is a technique of paramount importance in the analysis of pharmaceuticals because of its ability to separate moderately polar to less polar compounds, such as drugs and related substances. The concept of green analytical chemistry (GAC) aims to provide more environmentally friendly and safer analytical methods in terms of reagents, energy, and waste. One of the major challenges of GAC is to find an appropriate approach to evaluate the greenness of analytical methods. An extension of GAC, called white analytical chemistry (WAC), has been introduced to consider not only environmental friendliness, but also other aspects that contribute to the sustainability of methods, such as analytical and economic or practical efficiency. HPLC methods are intrinsically not green, due to the high consumption of toxic organic solvents and the resulting generation of large amounts of toxic waste. Fortunately, there are many approaches to overcome the non-green character of HPLC methods. In this article, various modifications of the HPLC methods that increase its environmental friendliness are presented, as well as the various tools used to evaluate environmental friendliness. In addition, the new concept of white analytical chemistry is presented.

References

1.          D’Atri V, Fekete S, Clarke A, Veuthey JL, Guillarme D. Recent Advances in Chromatography for Pharmaceutical Analysis. Anal Chem. 2019 Jan 2;91(1):210–39.

2.          Djajić N, Krmar J, Rmandić M, Rašević M, Otašević B, Zecevic M, et al. Modified aqueous mobile phases: A way to improve retention behavior of active pharmaceutical compounds and their impurities in liquid chromatography. J Chromatogr Open. 2021 Dec 1;2:100023.

3.          Swartz M. HPLC DETECTORS: A BRIEF REVIEW. J Liq Chromatogr Relat Technol. 2010 Jul 13;33(9–12):1130–50.

4.          Anastas PT. Green Chemistry and the Role of Analytical Methodology Development. Crit Rev Anal Chem. 1999 Sep 1;29(3):167–75.

5.          Gałuszka A, Migaszewski ZM, Konieczka P, Namieśnik J. Analytical Eco-Scale for assessing the greenness of analytical procedures. TrAC Trends Anal Chem. 2012 Jul 1;37:61–72.

6.          Namiesnik J. Pro-Ecological education. Environ Sci Pollut Res. 1999 Dec 1;6(4):243–4.

7.          Maljurić N, Otašević B, Golubović J, Krmar J, Zečević M, Protić A. A new strategy for development of eco-friendly RP-HPLC method using Corona Charged Aerosol Detector and its application for simultaneous analysis of risperidone and its related impurities. Microchem J. 2020 Mar 1;153:104394.

8.          Płotka J, Tobiszewski M, Sulej AM, Kupska M, Górecki T, Namieśnik J. Green chromatography. J Chromatogr A. 2013 Sep 13;1307:1–20.

9.          Aly AA, Górecki T. Green Chromatography and Related Techniques. In: Płotka-Wasylka J, Namieśnik J, editors. Green Analytical Chemistry: Past, Present and Perspectives [Internet]. Singapore: Springer Singapore; 2019. p. 241–98. Available from: https://doi.org/10.1007/978-981-13-9105-7_9

10.       Welch CJ, Wu N, Biba M, Hartman R, Brkovic T, Gong X, et al. Greening analytical chromatography. Green Anal Chem. 2010 Jul 1;29(7):667–80.

11.       Kaljurand M, Koel M. Recent Advancements on Greening Analytical Separation. Crit Rev Anal Chem. 2011 Jan 31;41(1):2–20.

12.       Gaber Y, Törnvall U, Kumar MA, Ali Amin M, Hatti-Kaul R. HPLC-EAT (Environmental Assessment Tool): A tool for profiling safety, health and environmental impacts of liquid chromatography methods. Green Chem. 2011;13(8):2021–5.

13.       Funari CS, Carneiro RL, Khandagale MM, Cavalheiro AJ, Hilder EF. Acetone as a greener alternative to acetonitrile in liquid chromatographic fingerprinting. J Sep Sci. 2015 May 1;38(9):1458–65.

14.       Koel M. Do we need Green Analytical Chemistry? Green Chem. 2016;18(4):923–31.

15.       Płotka-Wasylka J. A new tool for the evaluation of the analytical procedure: Green Analytical Procedure Index. Talanta. 2018 May 1;181:204–9.

16.       Pena-Pereira F, Wojnowski W, Tobiszewski M. AGREE—Analytical GREEnness Metric Approach and Software. Anal Chem. 2020 Jul 21;92(14):10076–82.

17.       Bystrzanowska M, Orłowski A, Tobiszewski M. Comparative Greenness Evaluation. In: Płotka-Wasylka J, Namieśnik J, editors. Green Analytical Chemistry: Past, Present and Perspectives [Internet]. Singapore: Springer Singapore; 2019. p. 353–78. Available from: https://doi.org/10.1007/978-981-13-9105-7_12

18.       Nowak PM, Wietecha-Posłuszny R, Pawliszyn J. White Analytical Chemistry: An approach to reconcile the principles of Green Analytical Chemistry and functionality. TrAC Trends Anal Chem. 2021 May 1;138:116223.

19.       Anastas PT, Warner JC. Green Chemistry: Theory and Practice [Internet]. Oxford University Press; 2000. Available from: https://books.google.rs/books?id=_iMORRU42isC

20.       Gałuszka A, Migaszewski Z, Namieśnik J. The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices. TrAC Trends Anal Chem. 2013 Oct 1;50:78–84.

21.       LoBrutto R, Kazakevich Y. Reversed-Phase HPLC. In: HPLC for Pharmaceutical Scientists [Internet]. 2007 [cited 2023 Mar 6]. p. 139–239. Available from: https://doi.org/10.1002/9780470087954.ch4

22.       Lanckmans K, Clinckers R, Van Eeckhaut A, Sarre S, Smolders I, Michotte Y. Use of microbore LC–MS/MS for the quantification of oxcarbazepine and its active metabolite in rat brain microdialysis samples. J Chromatogr B. 2006 Feb 2;831(1):205–12.

23.       Sinnaeve BA, Decaestecker TN, Claerhout IJ, Kestelyn P, Remon JP, Van Bocxlaer JF. Confirmation of ofloxacin precipitation in corneal deposits by microbore liquid chromatography–quadrupole time-of-flight tandem mass spectrometry. J Chromatogr B. 2003 Feb 25;785(1):193–6.

24.       Wong SHY, Cudny B, Aziz O, Marzouk N, Sheehan SR. Microbore Liquid Chromatography for Pediatric and Neonatal Therapeutic Drug Monitoring and Toxicology: Clinical Analysis of Chloramphenicol. J Liq Chromatogr. 1988 Apr 1;11(5):1143–58.

25.       Yu H, Straubinger RM, Cao J, Wang H, Qu J. Ultra-sensitive quantification of paclitaxel using selective solid-phase extraction in conjunction with reversed-phase capillary liquid chromatography/tandem mass spectrometry. J Chromatogr A. 2008 Nov 14;1210(2):160–7.

26.       Randall KL, Argoti D, Paonessa JD, Ding Y, Oaks Z, Zhang Y, et al. An improved liquid chromatography–tandem mass spectrometry method for the quantification of 4-aminobiphenyl DNA adducts in urinary bladder cells and tissues. Mass Spectrom Innov Appl Part VI. 2010 Jun 18;1217(25):4135–43.

27.       Foster SW, Xie X, Pham M, Peaden PA, Patil LM, Tolley LT, et al. Portable capillary liquid chromatography for pharmaceutical and illicit drug analysis. J Sep Sci. 2020 May 1;43(9–10):1623–7.

28.       Lam SC, Coates LJ, Hemida M, Gupta V, Haddad PR, Macka M, et al. Miniature and fully portable gradient capillary liquid chromatograph. Anal Chim Acta. 2020 Mar 8;1101:199–210.

29.       Rahavendran SV, Vekich S, Skor H, Batugo M, Nguyen L, Shetty B, et al. Discovery pharmacokinetic studies in mice using serial microsampling, dried blood spots and microbore LC–MS/MS. Bioanalysis. 2012 May 1;4(9):1077–95.

30.       André C, Guillaume YC. Development of nano Bio LC columns for the search of acetylcholinesterase molecular targets. J Sep Sci. 2022 Jul 1;45(13):2109–17.

31.       Fekete S, Schappler J, Veuthey JL, Guillarme D. Current and future trends in UHPLC. UHPLC Are We 10 Years Its Commer Introd. 2014 Dec 1;63:2–13.

32.       Jerkovich AD, Vivilecchia RV. Development of Fast HPLC Methods. In: HPLC for Pharmaceutical Scientists [Internet]. 2007 [cited 2023 Mar 6]. p. 763–810. Available from: https://doi.org/10.1002/9780470087954.ch17

33.       Schmidt AH, Molnár I. Using an innovative Quality-by-Design approach for development of a stability indicating UHPLC method for ebastine in the API and pharmaceutical formulations. J Pharm Biomed Anal. 2013 May 5;78–79:65–74.

34.       Ferey L, Raimbault A, Rivals I, Gaudin K. UHPLC method for multiproduct pharmaceutical analysis by Quality-by-Design. J Pharm Biomed Anal. 2018 Jan 30;148:361–8.

35.       Pichini S, Mannocchi G, Gottardi M, Pérez-Acevedo AP, Poyatos L, Papaseit E, et al. Fast and sensitive UHPLC-MS/MS analysis of cannabinoids and their acid precursors in pharmaceutical preparations of medical cannabis and their metabolites in conventional and non-conventional biological matrices of treated individual. Talanta. 2020 Mar 1;209:120537.

36.       Guichard N, Fekete S, Guillarme D, Bonnabry P, Fleury-Souverain S. Computer-assisted UHPLC–MS method development and optimization for the determination of 24 antineoplastic drugs used in hospital pharmacy. J Pharm Biomed Anal. 2019 Feb 5;164:395–401.

37.       Kimoto M, Sakane T, Katsumi H, Yamamoto A. Quick and Simultaneous Analysis of Dissolved Active Pharmaceutical Ingredients and Formulation Excipients from the Dissolution Test Utilizing UHPLC and Charged Aerosol Detector. AAPS PharmSciTech. 2021 Nov 1;22(8):262.

38.       Sheng H, Kim D, Chin AS, Zhao Y, Liu Y, Katwaru R, et al. Development of an automated and High throughput UHPLC/MS based workflow for cleaning verification of potent compounds in the pharmaceutical manufacturing environment. J Pharm Biomed Anal. 2020 Sep 5;188:113401.

39.       Shaaban H, Górecki T. Fused core particles as an alternative to fully porous sub-2 μm particles in pharmaceutical analysis using coupled columns at elevated temperature. Anal Methods. 2012;4(9):2735–43.

40.       Waterlot C, Ghinet A, Lipka E. Core-shell Particles: A Way to Greening Liquid Chromatography in Environmental Applications. Curr Chromatogr. 2018;5(2):78–90.

41.       Ibrahim AE, Hashem H, Elhenawee M, Saleh H. Comparison between core–shell and totally porous particle stationary phases for fast and green LC determination of five hepatitis-C antiviral drugs. J Sep Sci. 2018 Apr 1;41(8):1734–42.

42.       Gumustas M, Zalewski P, Ozkan SA, Uslu B. The History of the Core–Shell Particles and Applications in Active Pharmaceutical Ingredients Via Liquid Chromatography. Chromatographia. 2019 Jan 1;82(1):17–48.

43.       Mohamed HM. Green, environment-friendly, analytical tools give insights in pharmaceuticals and cosmetics analysis. TrAC Trends Anal Chem. 2015 Mar 1;66:176–92.

44.       Rashed NS, Zayed S, Abdelazeem A, Fouad F. Development and validation of a green HPLC method for the analysis of clorsulon, albendazole, triclabendazole and ivermectin using monolithic column: Assessment of the greenness of the proposed method. Microchem J. 2020 Sep 1;157:105069.

45.       Záková P, Sklenarova H, Nováková L, Hájková R, Matysová L, Solich P. Application of monolithic columns in pharmaceutical analysis. Determination of indomethacin and its degradation products. J Sep Sci. 2009 Aug 1;32:2786–92.

46.       Yehia AM, Mohamed HM. Green approach using monolithic column for simultaneous determination of coformulated drugs. J Sep Sci. 2016 Jun 1;39(11):2114–22.

47.       Abdel-Moety EM, Rezk MR, Wadie M, Tantawy MA. A combined approach of green chemistry and Quality-by-Design for sustainable and robust analysis of two newly introduced pharmaceutical formulations treating benign prostate hyperplasia. Microchem J. 2021 Jan 1;160:105711.

48.       Yabré M, Ferey L, Somé IT, Gaudin K. Greening Reversed-Phase Liquid Chromatography Methods Using Alternative Solvents for Pharmaceutical Analysis. Molecules. 2018;23(5).

49.       Pena-Pereira F, Kloskowski A, Namieśnik J. Perspectives on the replacement of harmful organic solvents in analytical methodologies: a framework toward the implementation of a generation of eco-friendly alternatives. Green Chem. 2015;17(7):3687–705.

50.       Byrne FP, Jin S, Paggiola G, Petchey THM, Clark JH, Farmer TJ, et al. Tools and techniques for solvent selection: green solvent selection guides. Sustain Chem Process. 2016 May 23;4(1):7.

51.       Tobiszewski M, Namieśnik J. Scoring of solvents used in analytical laboratories by their toxicological and exposure hazards. Ecotoxicol Environ Saf. 2015 Oct 1;120:169–73.

52.       Hutchinson JP, Remenyi T, Nesterenko P, Farrell W, Groeber E, Szucs R, et al. Investigation of polar organic solvents compatible with Corona Charged Aerosol Detection and their use for the determination of sugars by hydrophilic interaction liquid chromatography. 750th Anniv Vol. 2012 Oct 31;750:199–206.

53.       Roy CE, Kauss T, Prevot S, Barthelemy P, Gaudin K. Analysis of fatty acid samples by hydrophilic interaction liquid chromatography and charged aerosol detector. J Chromatogr A. 2015 Feb 27;1383:121–6.

54.       Fritz R, Ruth W, Kragl U. Assessment of acetone as an alternative to acetonitrile in peptide analysis by liquid chromatography/mass spectrometry. Rapid Commun Mass Spectrom. 2009 Jul 30;23(14):2139–45.

55.       Beilke MC, Beres MJ, Olesik SV. Gradient enhanced-fluidity liquid hydrophilic interaction chromatography of ribonucleic acid nucleosides and nucleotides: A “green” technique. J Chromatogr A. 2016 Mar 4;1436:84–90.

56.       dos Santos Pereira A, Girón AJ, Admasu E, Sandra P. Green hydrophilic interaction chromatography using ethanol–water–carbon dioxide mixtures. J Sep Sci. 2010 Mar 1;33(6–7):834–7.

57.       El-Shaheny RN, El-Maghrabey MH, Belal FF. Micellar Liquid Chromatography from Green Analysis Perspective. 2015 [cited 2023 Mar 8];13(1). Available from: https://doi.org/10.1515/chem-2015-0101

58.       Maljurić N, Golubović J, Otašević B, Zečević M, Protić A. Quantitative structure –retention relationship modeling of selected antipsychotics and their impurities in green liquid chromatography using cyclodextrin mobile phases. Anal Bioanal Chem. 2018 Apr 1;410(10):2533–50.

59.       Chen D, Jiang S, Chen Y, Hu Y. HPLC determination of sertraline in bulk drug, tablets and capsules using hydroxypropyl-β-cyclodextrin as mobile phase additive. J Pharm Biomed Anal. 2004 Jan 27;34(1):239–45.

60.       Marks DW. Reversed-Phase High-Performance Liquid Chromatographic Separation of LY309887 (Thienyl-5,10-Dideazatetrahydrofolate) Stereoisomers Using β-Cyclodextrin as a Mobile Phase Additive. J Chromatogr Sci. 1997 May 1;35(5):201–5.

61.       González-Ruiz V, León AG, Olives AI, Martín MA, Menéndez JC. Eco-friendly liquid chromatographic separations based on the use of cyclodextrins as mobile phase additives. Green Chem. 2011;13(1):115–26.

62.       Keith LH, Gron LU, Young JL. Green Analytical Methodologies. Chem Rev. 2007 Jun 1;107(6):2695–708.

63.       Tobiszewski M. Metrics for green analytical chemistry. Anal Methods. 2016;8(15):2993–9.

64.       Płotka-Wasylka J, Wojnowski W. Complementary green analytical procedure index (ComplexGAPI) and software. Green Chem. 2021;23(21):8657–65.

65.       Marcinkowska R, Namieśnik J, Tobiszewski M. Green and equitable analytical chemistry. Green Anal Chem • New Bus Models Ethics Legis Econ. 2019 Oct 1;19:19–23.

66.       Nowak PM, Kościelniak P. What Color Is Your Method? Adaptation of the RGB Additive Color Model to Analytical Method Evaluation. Anal Chem. 2019 Aug 20;91(16):10343–52.

Published
2023/04/26
Section
Review articles