Crosstalk between vitamin status and Gut Microbiota: the key to maintaining immune homeostasis in the gut

  • Marija Rakić University in Belgrade – Faculty of Biology, Institute of Physiology and Biochemistry "Ivan Djaja"
  • Jelena Repac University in Belgrade – Faculty of Biology, Institute of Physiology and Biochemistry "Ivan Djaja"
  • Tanja Lunić University in Belgrade – Faculty of Biology, Institute of Physiology and Biochemistry "Ivan Djaja"
  • Bojan Božić University in Belgrade – Faculty of Biology, Institute of Physiology and Biochemistry "Ivan Djaja"
  • Biljana Božić-Nedeljković
Keywords: gut bicrobiota, dysbiosis, immune system, B vitamins, homeostasis

Abstract


The human gut microbiota is a diverse ecosystem that harbours a variety of microorganisms, including proteobacteria, bacteria, viruses, fungi, protists, and archaea. These microorganisms are collectively involved in several vital functions, including nutrient metabolism, vitamin synthesis, immune system regulation, neurotransmitter production, drug metabolism, and communication with the central nervous system. Dysbiosis within the gut microbiota has been shown to be a critical factor in the development of chronic disease. Investigating the effects of gut microbiota composition on overall health holds promise for the treatment of inflammatory diseases and the development of new therapeutic interventions. One notable aspect of the functionality of the gut microbiota is its involvement in the production of essential B vitamins. These vitamins exert a significant influence on immune responses and the composition of the gut microbiota. Competition may occur between the host and the gut microbiota for B vitamins, which some bacteria obtain from food or from synthesis by other gut bacteria. Thus, the availability of B vitamins in the diet has the potential to influence the composition of the gut microbiota and thus immune homeostasis. The profile of the gut microbiota varies individually, with diet proving to be an important modulator of both its composition and functional properties. However, further extensive research efforts are needed to understand the complex interplay between the gut microbiota, vitamins, and immune response mechanisms. Such investigations have the potential to develop innovative therapeutic strategies for a spectrum of inflammatory diseases, opening new avenues for improved patient outcomes.

References

Rinninella E, Raoul P, Cintoni M, Franceschi F, Miggiano GAD, Gasbarrini A, et al. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms. 2019;7(1):14.

Peterson CT, Perez Santiago J, Iablokov SN, Chopra D, Rodionov DA, Peterson SN. Short-chain fatty acids modulate healthy gut microbiota composition and functional potential. Curr Microbiol. 2022;79(5):128.

Campbell C, Kandalgaonkar MR, Golonka RM, Yeoh BS, Vijay-Kumar M, Saha P. Crosstalk between gut microbiota and host immunity: Impact on inflammation and immunotherapy. Biomedicines. 2023;11(2):294.

Yoo JY, Groer M, Dutra SVO, Sarkar A, McSkimming DI. Gut microbiota and immune system interactions. Microorganisms. 2020;8(10):1587.

Weersma RK, Zhernakova A, Fu J. Interaction between drugs and the gut microbiome. Gut. 2020;69(8):1510-9.

Pant A, Maiti TK, Mahajan D, Das B. Human gut microbiota and drug metabolism. Microb Ecol. 2022:1-15.

Dikeocha IJ, Al‐Kabsi AM, Miftahussurur M, Alshawsh MA. Pharmacomicrobiomics: Influence of gut microbiota on drug and xenobiotic metabolism. FASEB J. 2022;36(6):e22350.

Javdan B, Lopez JG, Chankhamjon P, Lee Y-CJ, Hull R, Wu Q, et al. Personalized mapping of drug metabolism by the human gut microbiome. Cell. 2020;181(7):1661-79.e22.

Wei M, Chu C-Q. Prediction of treatment response: personalized medicine in the management of rheumatoid arthritis. Best Pract Res Clin Rheumatol. 2022;36(1):101741.

Yan H, Su R, Xue H, Gao C, Li X, Wang C. Pharmacomicrobiology of methotrexate in rheumatoid arthritis: gut microbiome as predictor of therapeutic response. Front Immunol. 2021;12:789334.

Walker AW, Hoyles L. Human microbiome myths and misconceptions. Nat Microbiol. 2023;8(8):1392-6.

Larabi AB, Masson HL, Bäumler AJ. Bile acids as modulators of gut microbiota composition and function. Gut Microbes. 2023;15(1):2172671.

Jaswal K, Todd OA, Behnsen J. Neglected gut microbiome: interactions of the non-bacterial gut microbiota with enteric pathogens. Gut Microbes. 2023;15(1):2226916.

Bushman FD, Lewis JD, Wu GD. Diet, gut enterotypes and health: is there a link? Nestle Nutr Inst Workshop Ser. 2013;77:65-73.

Jandhyala SM, Talukdar R, Subramanyam C, Vuyyuru H, Sasikala M, Reddy DN. Role of the normal gut microbiota. World J Gastroenterol. 2015;21(29):8787.

Laforest-Lapointe I, Arrieta M-C. Microbial eukaryotes: a missing link in gut microbiome studies. MSystems. 2018;3(2):e00201-17.

Chabé M, Lokmer A, Ségurel L. Gut protozoa: friends or foes of the human gut microbiota? Trends Parasitol. 2017;33(12):925-34.

Mafra D, Ribeiro M, Fonseca L, Regis B, Cardozo LF, Dos Santos HF, et al. Archaea from the gut microbiota of humans: Could be linked to chronic diseases? Anaerobe. 2022;77:102629.

Gaci N, Borrel G, Tottey W, O’Toole PW, Brugère J-F. Archaea and the human gut: new beginning of an old story. World J Gastroenterol. 2014;20(43):16062.

Lepczyńska M, Białkowska J, Dzika E, Piskorz-Ogórek K, Korycińska J. Blastocystis: how do specific diets and human gut microbiota affect its development and pathogenicity? Eur J Clin Microbiol Infect Dis. 2017;36:1531-40.

Sardinha-Silva A, Alves-Ferreira EV, Grigg ME. Intestinal immune responses to commensal and pathogenic protozoa. Front Immunol. 2022;13:963723.

Lukeš J, Stensvold CR, Jirků-Pomajbíková K, Wegener Parfrey L. Are human intestinal eukaryotes beneficial or commensals? PLoS Pathog. 2015;11(8):e1005039.

Jeffery IB, Cotter PD, Scanlan PD. Collateral damage in the human gut microbiome-Blastocystis is significantly less prevalent in an antibiotic-treated adult population compared to non-antibiotic treated controls. Front Cell Infect Microbiol. 2022;12:176.

Wang T, Goyal A, Dubinkina V, Maslov S. Evidence for a multi-level trophic organization of the human gut microbiome. PLoS Comput Biol. 2019;15(12):e1007524.

Barreto HC, Gordo I. Intrahost evolution of the gut microbiota. Nat Rev Microbiol. 2023;21(9):590-603.

Dąbrowska K, Witkiewicz W. Correlations of host genetics and gut microbiome composition. Front Microbiol. 2016;7:1357.

Seki D, Schauberger C, Hausmann B, Berger A, Wisgrill L, Berry D. Individuality of the Extremely Premature Infant Gut Microbiota Is Driven by Ecological Drift. mSystems. 2022;7(3):e00163-22.

Vandeputte D, Falony G, Vieira-Silva S, Tito RY, Joossens M, Raes J. Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates. Gut. 2016;65(1):57-62.

Procházková N, Falony G, Dragsted LO, Licht TR, Raes J, Roager HM. Advancing human gut microbiota research by considering gut transit time. Gut. 2023;72(1):180-91.

Roland BC, Ciarleglio MM, Clarke JO, Semler JR, Tomakin E, Mullin GE, et al. Small intestinal transit time is delayed in small intestinal bacterial overgrowth. J Clin Gastroenterol. 2015;49(7):571-6.

Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, et al. Enterotypes of the human gut microbiome. Nature. 2011;473(7346):174-80.

Rajilić‐Stojanović M, Heilig HG, Tims S, Zoetendal EG, de Vos WM. Long‐term monitoring of the human intestinal microbiota composition. Environ Microbiol. 2013;15(4):1146-59.

Wolff R, Shoemaker W, Garud N. Ecological stability emerges at the level of strains in the human gut microbiome. mBio. 2023;14(2):e02502-22.

Sinsuebchuea J, Paenkaew P, Wutthiin M, Nantanaranon T, Laeman K, Kittichotirat W, et al. Characterization of the Gut Microbiota in Urban Thai Individuals Reveals Enterotype-Specific Signature. Microorganisms. 2023;11(1):136.

Lim MY, Rho M, Song Y-M, Lee K, Sung J, Ko G. Stability of gut enterotypes in Korean monozygotic twins and their association with biomarkers and diet. Sci Rep. 2014;4(1):7348.

Mobeen F, Sharma V, Tulika P. Enterotype variations of the healthy human gut microbiome in different geographical regions. Bioinformation. 2018;14(9):560.

Liang C, Tseng H-C, Chen H-M, Wang W-C, Chiu C-M, Chang J-Y, et al. Diversity and enterotype in gut bacterial community of adults in Taiwan. BMC Genomics. 2017;18:1-11.

Costea PI, Hildebrand F, Arumugam M, Bäckhed F, Blaser MJ, Bushman FD, et al. Enterotypes in the landscape of gut microbial community composition. Nat Microbiol. 2018;3(1):8-16.

Wu GD, Chen J, Hoffmann C, Bittinger K, Chen Y-Y, Keilbaugh SA, et al. Linking long-term dietary patterns with gut microbial enterotypes. Science. 2011;334(6052):105-8.

Chen T, Long W, Zhang C, Liu S, Zhao L, Hamaker BR. Fiber-utilizing capacity varies in Prevotella-versus Bacteroides-dominated gut microbiota. Sci Rep. 2017;7(1):2594.

Noh H, Jang H-H, Kim G, Zouiouich S, Cho S-Y, Kim H-J, et al. Taxonomic composition and diversity of the gut microbiota in relation to habitual dietary intake in Korean adults. Nutrients. 2021;13(2):366.

Yang T-W, Lee W-H, Tu S-J, Huang W-C, Chen H-M, Sun T-H, et al. Enterotype-based analysis of gut microbiota along the conventional adenoma-carcinoma colorectal cancer pathway. Sci Rep. 2019;9(1):10923.

Olsson LM, Boulund F, Nilsson S, Khan MT, Gummesson A, Fagerberg L, et al. Dynamics of the normal gut microbiota: A longitudinal one-year population study in Sweden. Cell Host Microbe. 2022;30(5):726-39.e3.

Vandeputte D, De Commer L, Tito RY, Kathagen G, Sabino J, Vermeire S, et al. Temporal variability in quantitative human gut microbiome profiles and implications for clinical research. Nat Commun. 2021;12(1):6740.

Tang Q, Jin G, Wang G, Liu T, Liu X, Wang B, et al. Current sampling methods for gut microbiota: a call for more precise devices. Front Cell Infect Microbiol. 2020;10:151.

Yilmaz B, Fuhrer T, Morgenthaler D, Krupka N, Wang D, Spari D, et al. Plasticity of the adult human small intestinal stoma microbiota. Cell Host Microbe. 2022;30(12):1773-87.e6.

Ruigrok RA, Weersma RK, Vich Vila A. The emerging role of the small intestinal microbiota in human health and disease. Gut Microbes. 2023;15(1):2201155.

Filardy AA, Ferreira JR, Rezende RM, Kelsall BL, Oliveira RP. The intestinal microenvironment shapes macrophage and dendritic cell identity and function. Immunol Lett. 2023;253:41-53.

Canesso MCC, Moreira TG, Faria AMC. Compartmentalization of gut immune responses: mucosal niches and lymph node peculiarities. Immunol Lett. 2022;251-252:86-90.

Kastl Jr AJ, Terry NA, Wu GD, Albenberg LG. The structure and function of the human small intestinal microbiota: current understanding and future directions. Cell Mol Gastroenterol Hepatol. 2020;9(1):33-45.

Delbaere K, Roegiers I, Bron A, Durif C, Van de Wiele T, Blanquet-Diot S, et al. The small intestine: dining table of host–microbiota meetings. FEMS Microbiol Rev. 2023;47(3):fuad022.

Hadadi N, Berweiler V, Wang H, Trajkovski M. Intestinal microbiota as a route for micronutrient bioavailability. Curr Opin Endocr Metab Res. 2021;20:100285.

Guo P, Zhang K, Ma X, He P. Clostridium species as probiotics: potentials and challenges. J Animal Sci Biotechnol. 2020;11(1):1-10.

Stolaki M, Minekus M, Venema K, Lahti L, Smid EJ, Kleerebezem M, et al. Microbial communities in a dynamic in vitro model for the human ileum resemble the human ileal microbiota. FEMS Microbiol Ecol. 2019;95(8):fiz096.

Mörbe UM, Jørgensen PB, Fenton TM, von Burg N, Riis LB, Spencer J, et al. Human gut-associated lymphoid tissues (GALT); diversity, structure, and function. Mucosal Immunol. 2021;14(4):793-802.

Xu X, Ying J. Gut microbiota and immunotherapy. Front Microbiol. 2022;13:945887.

Yuan X, Chang C, Chen X, Li K. Emerging trends and focus of human gastrointestinal microbiome research from 2010–2021: a visualized study. J Transl Med. 2021;19(1):1-16.

Colella M, Charitos IA, Ballini A, Cafiero C, Topi S, Palmirotta R, et al. Microbiota revolution: How gut microbes regulate our lives. World J Gastroenterol. 2023;29(28):4368.

Di Sabatino A, Santacroce G, Rossi CM, Broglio G, Lenti MV. Role of mucosal immunity and epithelial–vascular barrier in modulating gut homeostasis. Intern Emerg Med. 2023;18(6):1635-1646.

Simons A, Alhanout K, Duval RE. Bacteriocins, antimicrobial peptides from bacterial origin: Overview of their biology and their impact against multidrug-resistant bacteria. Microorganisms. 2020;8(5):639.

Drider D. Gut microbiota is an important source of bacteriocins and their in situ expression can be explored for treatment of bacterial infections. Probiotics Antimicrob Proteins. 2021:1-7.

Heilbronner S, Krismer B, Brötz-Oesterhelt H, Peschel A. The microbiome-shaping roles of bacteriocins. Nat Rev Microbiol. 2021;19(11):726-39.

Jung C, Hugot J-P, Barreau F. Peyer's patches: the immune sensors of the intestine. Int J Inflam. 2010;2010:823710.

Sumida H. Dynamics and clinical significance of intestinal intraepithelial lymphocytes. Immunol Med. 2019;42(3):117-23.

Kuczma MP, Szurek EA, Cebula A, Chassaing B, Jung Y-J, Kang S-M, et al. Commensal epitopes drive differentiation of colonic Tregs. Sci Adv. 2020;6(16):eaaz3186.

Li Y, Toothaker JM, Ben-Simon S, Ozeri L, Schweitzer R, McCourt BT, et al. In utero human intestine harbors unique metabolome, including bacterial metabolites. JCI Insight. 2020;5(21):e138751.

Younge N, McCann JR, Ballard J, Plunkett C, Akhtar S, Araújo-Pérez F, et al. Fetal exposure to the maternal microbiota in humans and mice. JCI Insight. 2019;4(19): e127806.

Parker EL, Silverstein RB, Mysorekar IU. Bacteria make T cell memories in utero. Cell. 2021;184(13):3356-7.

Amir M, Zeng MY. Immune imprinting in utero. Science. 2021;373(6558):967-8.

70. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11(5):373-84.

Suresh R, Mosser DM. Pattern recognition receptors in innate immunity, host defense, and immunopathology. Adv Physiol Educ. 2013;37(4):284-91.

Zhang Y, Chen R, Zhang D, Qi S, Liu Y. Metabolite interactions between host and microbiota during health and disease: Which feeds the other? Biomed Pharmacother. 2023;160:114295.

Liu J, Tan Y, Cheng H, Zhang D, Feng W, Peng C. Functions of gut microbiota metabolites, current status and future perspectives. Aging Dis. 2022;13(4):1106.

Su X, Gao Y, Yang R. Gut microbiota derived bile acid metabolites maintain the homeostasis of gut and systemic immunity. Front Immunol. 2023;14:1127743.

Cai J, Sun L, Gonzalez FJ. Gut microbiota-derived bile acids in intestinal immunity, inflammation, and tumorigenesis. Cell Host Microbe. 2022;30(3):289-300.

Cai J, Rimal B, Jiang C, Chiang JY, Patterson AD. Bile acid metabolism and signaling, the microbiota, and metabolic disease. Pharmacol Ther. 2022; 237:108238.

Fiorucci S, Biagioli M, Zampella A, Distrutti E. Bile acids activated receptors regulate innate immunity. Front Immunol. 2018;9:1853.

Pols TW, Puchner T, Korkmaz HI, Vos M, Soeters MR, de Vries CJ. Lithocholic acid controls adaptive immune responses by inhibition of Th1 activation through the Vitamin D receptor. PLoS One. 2017;12(5):e0176715.

Zhang Y, Gao X, Gao S, Liu Y, Wang W, Feng Y, et al. Effect of gut flora mediated‐bile acid metabolism on intestinal immune microenvironment. Immunology. 2023; 170(3):301-318.

Vavassori P, Mencarelli A, Renga B, Distrutti E, Fiorucci S. The bile acid receptor FXR is a modulator of intestinal innate immunity. J Immunol. 2009;183(10):6251-61.

Stefano F, Zampella A, Patrizia R, Eleonora D, Michele B. Immunomodulatory functions of FXR. Mol Cell Endocrinol. 2022;551:111650.

Renga B, Mencarelli A, Cipriani S, D'Amore C, Carino A, Bruno A, et al. The bile acid sensor FXR is required for immune-regulatory activities of TLR-9 in intestinal inflammation. PLoS One. 2013;8(1):e54472.

Duboc H, Taché Y, Hofmann AF. The bile acid TGR5 membrane receptor: from basic research to clinical application. Dig Liver Dis. 2014;46(4):302-12.

Okamura M, Shizu R, Abe T, Kodama S, Hosaka T, Sasaki T, et al. PXR functionally interacts with NF-κB and AP-1 to downregulate the inflammation-induced expression of chemokine CXCL2 in mice. Cells. 2020;9(10):2296.

Woo V, Alenghat T. Epigenetic regulation by gut microbiota. Gut Microbes. 2022;14(1):2022407.

Xiong R-G, Zhou D-D, Wu S-X, Huang S-Y, Saimaiti A, Yang Z-J, et al. Health benefits and side effects of short-chain fatty acids. Foods. 2022;11(18):2863.

Liu T, Sun Z, Yang Z, Qiao X. Microbiota-derived short-chain fatty acids and modulation of host-derived peptides formation: focused on host defense peptides. Biomed Pharmacother. 2023;162:114586.

Tan JK, Macia L, Mackay CR. Dietary fiber and SCFAs in the regulation of mucosal immunity. J Allergy Clin Immunol. 2023;151(2):361-370.

Comalada M, Bailon E, de Haro O, Lara-Villoslada F, Xaus J, Zarzuelo A, et al. The effects of short-chain fatty acids on colon epithelial proliferation and survival depend on the cellular phenotype. J Cancer Res Clin Oncol. 2006;132:487-97.

Ragavan ML, Hemalatha S. The functional roles of short chain fatty acids as postbiotics in human gut: future perspectives. Food Sci Biotechnol. 2023. doi: 10.1007/s10068-023-01414-x.

Wang H-B, Wang P-Y, Wang X, Wan Y-L, Liu Y-C. Butyrate enhances intestinal epithelial barrier function via up-regulation of tight junction protein Claudin-1 transcription. Dig Dis Sci. 2012;57:3126-35.

Yan H, Ajuwon KM. Butyrate modifies intestinal barrier function in IPEC-J2 cells through a selective upregulation of tight junction proteins and activation of the Akt signaling pathway. PloS one. 2017;12(6):e0179586.

Schulthess J, Pandey S, Capitani M, Rue-Albrecht KC, Arnold I, Franchini F, et al. The short chain fatty acid butyrate imprints an antimicrobial program in macrophages. Immunity. 2019;50(2):432-45.e7.

Reva K, Laranjinha J, Rocha BS. Epigenetic Modifications Induced by the Gut Microbiota May Result from What We Eat: Should We Talk about Precision Diet in Health and Disease? Metabolites. 2023;13(3):375.

Steiner CA, Cartwright IM, Taylor CT, Colgan SP. Hypoxia-inducible factor as a bridge between healthy barrier function, wound healing, and fibrosis. Am J Physiol Cell Physiol. 2022;323(3):C866-C78.

Cummins EP, Keogh CE, Crean D, Taylor CT. The role of HIF in immunity and inflammation. Mol Aspects Med. 2016;47:24-34.

Zinkernagel AS, Johnson RS, Nizet V. Hypoxia inducible factor (HIF) function in innate immunity and infection. J Mol Med (Berl). 2007;85:1339-46.

Manresa MC, Taylor CT. Hypoxia inducible factor (HIF) hydroxylases as regulators of intestinal epithelial barrier function. Cell Mol Gastroenterol Hepatol. 2017;3(3):303-15.

Watt R, Parkin K, Martino D. The potential effects of short-chain fatty acids on the epigenetic regulation of innate immune memory. Challenges. 2020;11(2):25.

Corrêa‐Oliveira R, Fachi JL, Vieira A, Sato FT, Vinolo MAR. Regulation of immune cell function by short‐chain fatty acids. Clin Transl Immunology. 2016;5(4):e73.

Zhou W, Sonnenberg GF. Activation and suppression of group 3 innate lymphoid cells in the gut. Trends Immunol. 2020;41(8):721-33.

Chun E, Lavoie S, Fonseca-Pereira D, Bae S, Michaud M, Hoveyda HR, et al. Metabolite-sensing receptor Ffar2 regulates colonic group 3 innate lymphoid cells and gut immunity. Immunity. 2019;51(5):871-84.e6.

103. van der Hee B, Wells JM. Microbial regulation of host physiology by short-chain fatty acids. Trends Microbiol. 2021;29(8):700-12.

Ikeda T, Nishida A, Yamano M, Kimura I. Short-chain fatty acid receptors and gut microbiota as therapeutic targets in metabolic, immune, and neurological diseases. Pharmacol Ther. 2022;239:108273.

Schiweck C, Edwin Thanarajah S, Aichholzer M, Matura S, Reif A, Vrieze E, et al. Regulation of CD4+ and CD8+ T cell biology by short-chain fatty acids and its relevance for autoimmune pathology. Int J Mol Sci. 2022;23(15):8272.

Krautkramer KA, Rey FE, Denu JM. Chemical signaling between gut microbiota and host chromatin: What is your gut really saying? J Biol Chem. 2017;292(21):8582-93.

Nur SM, Rath S, Ahmad V, Ahmad A, Ateeq B, Khan MI. Nutritive vitamins as epidrugs. Crit Rev Food Sci Nutr. 2021;61(1):1-13.

Krautkramer KA, Dhillon RS, Denu JM, Carey HV. Metabolic programming of the epigenome: host and gut microbial metabolite interactions with host chromatin. Transl Res. 2017;189:30-50.

D’Aquila P, Lynn Carelli L, De Rango F, Passarino G, Bellizzi D. Gut microbiota as important mediator between diet and DNA methylation and histone modifications in the host. Nutrients. 2020;12(3):597.

Gombart AF, Pierre A, Maggini S. A review of micronutrients and the immune system–working in harmony to reduce the risk of infection. Nutrients. 2020;12(1):236.

Ramakrishna BS. Role of the gut microbiota in human nutrition and metabolism. J Gastroenterol Hepatol. 2013;28:9-17.

Pham VT, Dold S, Rehman A, Bird JK, Steinert RE. Vitamins, the gut microbiome and gastrointestinal health in humans. Nutr Res. 2021;95:35-53.

Maynard CL, Elson CO, Hatton RD, Weaver CT. Reciprocal interactions of the intestinal microbiota and immune system. Nature. 2012;489(7415):231-41.

Sekirov I, Russell SL, Antunes LCM, Finlay BB. Gut microbiota in health and disease. Physiol Rev. 2010;90(3):859-904.

Yang Q, Liang Q, Balakrishnan B, Belobrajdic DP, Feng Q-J, Zhang W. Role of dietary nutrients in the modulation of gut microbiota: a narrative review. Nutrients. 2020;12(2):381.

Huang Z, Liu Y, Qi G, Brand D, Zheng SG. Role of vitamin A in the immune system. J Clin Med. 2018;7(9):258.

Cantorna MT, Snyder L, Arora J. Vitamin A and vitamin D regulate the microbial complexity, barrier function, and the mucosal immune responses to ensure intestinal homeostasis. Crit Rev Biochem Mol Biol. 2019;54(2):184-92.

Lee H, Ko G. Antiviral effect of vitamin A on norovirus infection via modulation of the gut microbiome. Sci Rep. 2016;6(1):25835.

Martens P-J, Gysemans C, Verstuyf A, Mathieu C. Vitamin D’s effect on immune function. Nutrients. 2020;12(5):1248.

Harrison SR, Li D, Jeffery LE, Raza K, Hewison M. Vitamin D, autoimmune disease and rheumatoid arthritis. Calcif Tissue Int. 2020;106:58-75.

Lee GY, Han SN. The role of vitamin E in immunity. Nutrients. 2018;10(11):1614.

Mandal S, Godfrey KM, McDonald D, Treuren WV, Bjørnholt JV, Midtvedt T, et al. Fat and vitamin intakes during pregnancy have stronger relations with a pro-inflammatory maternal microbiota than does carbohydrate intake. Microbiome. 2016;4:1-11.

Namazi, N., Larijani, B., Azadbakht, L. Vitamin K and the Immune System. In: Nutrition and Immunity. Mahmoudi, M., N. Rezaei, editors. Springer, Cham. 2019, pp 75–79.

Lai Y, Masatoshi H, Ma Y, Guo Y, Zhang B. Role of vitamin K in intestinal health. Front Immunol. 2022;12:791565.

Van Gorkom GN, Klein Wolterink RG, Van Elssen CH, Wieten L, Germeraad WT, Bos GM. Influence of vitamin C on lymphocytes: an overview. Antioxidants. 2018;7(3):41.

Carr AC, Maggini S. Vitamin C and immune function. Nutrients. 2017;9(11):1211.

Li X-Y, Meng L, Shen L, Ji H-F. Regulation of gut microbiota by vitamin C, vitamin E and β-carotene. Food Res Int. 2023;169:112749.

Yoshii K, Hosomi K, Sawane K, Kunisawa J. Metabolism of dietary and microbial vitamin B family in the regulation of host immunity. Front Nutr. 2019;6:48.

Uebanso T, Shimohata T, Mawatari K, Takahashi A. Functional roles of B‐vitamins in the gut and gut microbiome. Mol Nutr Food Res. 2020;64(18):2000426.

Hossain KS, Amarasena S, Mayengbam S. B vitamins and their roles in gut health. Microorganisms. 2022;10(6):1168.

Hayashi A, Mikami Y, Miyamoto K, Kamada N, Sato T, Mizuno S, et al. Intestinal dysbiosis and biotin deprivation induce alopecia through overgrowth of Lactobacillus murinus in mice. Cell Rep. 2017;20(7):1513-24.

Masri OA, Chalhoub JM, Sharara AI. Role of vitamins in gastrointestinal diseases. World J Gastroenterol. 2015;21(17):5191.

Hendrickson BA, Gokhale R, Cho JH. Clinical aspects and pathophysiology of inflammatory bowel disease. Clin Microbiol Rev. 2002;15(1):79-94.

Nishida A, Inoue R, Inatomi O, Bamba S, Naito Y, Andoh A. Gut microbiota in the pathogenesis of inflammatory bowel disease. Clin J Gastroenterol. 2018;11:1-10.

Vagianos K, Bector S, McConnell J, Bernstein CN. Nutrition assessment of patients with inflammatory bowel disease. JPEN J Parenter Enteral Nutr. 2007;31(4):311-9.

Kuroki F, Iida M, Tominaga M, Matsumoto T, Hirakawa K, Sugiyama S, et al. Multiple vitamin status in Crohn's disease: correlation with disease activity. Dig Dis Sci. 1993;38:1614-8.

Santoru ML, Piras C, Murgia A, Palmas V, Camboni T, Liggi S, et al. Cross sectional evaluation of the gut-microbiome metabolome axis in an Italian cohort of IBD patients. Sci Rep. 2017;7(1):9523.

Zhan Q, Wang R, Thakur K, Feng J-Y, Zhu Y-Y, Zhang J-G, et al. Unveiling of dietary and gut-microbiota derived B vitamins: Metabolism patterns and their synergistic functions in gut-brain homeostasis. Crit Rev Food Sci Nutr. 2022:1-13. doi: 10.1080/10408398.2022.2138263.

Altun I, Kurutaş EB. Vitamin B complex and vitamin B12 levels after peripheral nerve injury. Neural Regen Res. 2016;11(5):842.

Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci. 2012;13(10):701-12.

Braniste V, Al-Asmakh M, Kowal C, Anuar F, Abbaspour A, Tóth M, et al. The gut microbiota influences blood-brain barrier permeability in mice. Sci Transl Med. 2014;6(263):263ra158.

Kandpal M, Indari O, Baral B, Jakhmola S, Tiwari D, Bhandari V, et al. Dysbiosis of Gut Microbiota from the Perspective of the Gut–Brain Axis: Role in the Provocation of Neurological Disorders. Metabolites. 2022;12(11):1064.

Calderón‐Ospina CA, Nava‐Mesa MO. B Vitamins in the nervous system: Current knowledge of the biochemical modes of action and synergies of thiamine, pyridoxine, and cobalamin. CNS Neurosci Ther. 2020;26(1):5-13.

Mandić M, Mitić K, Nedeljković P, Perić M, Božić B, Lunić T, et al. Vitamin B complex and experimental autoimmune Encephalomyelitis–Attenuation of the clinical signs and gut microbiota dysbiosis. Nutrients. 2022;14(6):1273.

Dolina S, Margalit D, Malitsky S, Rabinkov A. Attention-deficit hyperactivity disorder (ADHD) as a pyridoxine-dependent condition: urinary diagnostic biomarkers. Med Hypotheses. 2014;82(1):111-6.

Murakami K, Miyake Y, Sasaki S, Tanaka K, Fukushima W, Kiyohara C, et al. Dietary intake of folate, vitamin B6, vitamin B12 and riboflavin and risk of Parkinson's disease: a case–control study in Japan. Br J Nutr. 2010;104(5):757-64.

Martignoni E, Tassorelli C, Nappi G, Zangaglia R, Pacchetti C, Blandini F. Homocysteine and Parkinson's disease: a dangerous liaison? J Neurol Sci. 2007;257(1-2):31-7.

Roth W, Mohamadzadeh M. Vitamin B12 and gut-brain homeostasis in the pathophysiology of ischemic stroke. EBioMedicine. 2021;73:103676.

Herrmann W, Obeid R. Homocysteine: a biomarker in neurodegenerative diseases. Clin Chem Lab Med. 2011;49(3):435-41.

Published
2023/12/23
Section
Review articles