KATP channels and cardioprotection
Abstract
This review discusses ATP-sensitive potassium (KATP) channels, which connect intracellular energy metabolism to cellular electrical activity and play crucial roles in various physiological processes, particularly in the pancreas and cardiovascular system. KATP channels open when ATP levels decrease during metabolic stress, such as ischemia, helping to protect the heart from injury by maintaining membrane potential and preventing calcium overload. These channels are found in multiple cell types across the cardiovascular system, influencing vascular tone and cardiac excitability. The review highlights the need for further research into the specific expression of KATP channel subunits in humans and the consequences of ischemic events on their functionality. Additionally, it explores the interplay between glycolysis and KATP channels, suggesting that glycolytic ATP can modulate KATP channel activity while emphasizing the cardioprotective effects during ischemic events. The potential for KATP channel openers (KCOs) as therapeutic agents for ischemic heart disease is noted, particularly in improving outcomes in patients undergoing cardiac procedures. Challenges remain in developing specific KCOs with minimal side effects, but advances in precision medicine may enhance targeted therapies in the future. Overall, KATP channels represent promising targets for enhancing cardiovascular health.
References
Foster MN, Coetzee WA. KATP Channels in the Cardiovascular System. Physiol Rev. 2016;96:177-252.
Tinker A, Aziz Q, Li Y, Specterman M. ATP-Sensitive Potassium Channels and Their Physiological and Pathophysiological Roles. Compr Physiol. 2018;8:1463-1511.
Patton BL, Zhu P, ElSheikh A, Driggers CM, Shyng SL. Dynamic duo: Kir6 and SUR in K(ATP) channel structure and function. Channels (Austin). 2024;18:2327708.
Ashcroft FM. KATP Channels and the Metabolic Regulation of Insulin Secretion in Health and Disease: The 2022 Banting Medal for Scientific Achievement Award Lecture. Diabetes. 2023;72:693-702.
Pipatpolkai T, Usher S, Stansfeld PJ, Ashcroft FM. New insights into K(ATP) channel gene mutations and neonatal diabetes mellitus. Nat Rev Endocrinol. 2020;16:378-393.
Ashcroft FM, Puljung MC, Vedovato N. Neonatal Diabetes and the K(ATP) Channel: From Mutation to Therapy. Trends Endocrinol Metab. 2017;28:377-387.
Yang HQ, Subbotina E, Ramasamy R, Coetzee WA. Cardiovascular K(ATP) channels and advanced aging. Pathobiol Aging Age Relat Dis. 2016;6:32517.
Yang HQ, Echeverry FA, ElSheikh A, Gando I, Anez Arredondo S, Samper N, et al. Subcellular trafficking and endocytic recycling of K(ATP) channels. Am J Physiol Cell Physiol. 2022;322:C1230-C1247.
McClenaghan C, Nichols CG. Kir6.1 and SUR2B in Cantu syndrome. Am J Physiol Cell Physiol. 2022;323:C920-C935.
Jackson WF. Tuning the signal: ATP-sensitive K(+) channels direct blood flow to cerebral capillaries. Sci Signal. 2022;15:eabo1118.
Longden TA, Zhao G, Hariharan A, Lederer WJ. Pericytes and the Control of Blood Flow in Brain and Heart. Annu Rev Physiol. 2023;85:137-164.
Aziz Q, Li Y, Tinker A. Endothelial biology and ATP-sensitive potassium channels. Channels (Austin). 2018;12:45-46.
Davis MJ, Kim HJ, Nichols CG. K(ATP) channels in lymphatic function. Am J Physiol Cell Physiol. 2022;323:C1018-C1035.
Nichols CG. Adenosine Triphosphate-Sensitive Potassium Currents in Heart Disease and Cardioprotection. Card Electrophysiol Clin. 2016;8:323-335.
Mahdi H, Jovanovic A. SUR2A as a base for cardioprotective therapeutic strategies. Mol Biol Rep. 2022;49:6717-6723.
Liss B, Roeper J. Molecular physiology of neuronal K-ATP channels (review). Mol Membr Biol. 2001;18:117-127.
Ballanyi K. Protective role of neuronal KATP channels in brain hypoxia. J Exp Biol. 2004;207:3201-3212.
Yamada K, Inagaki N. Neuroprotection by KATP channels. J Mol Cell Cardiol. 2005;38:945-949.
Sun XL, Hu G. ATP-sensitive potassium channels: a promising target for protecting neurovascular unit function in stroke. Clin Exp Pharmacol Physiol. 2010;37:243-252.
Yellen G. Ketone bodies, glycolysis, and KATP channels in the mechanism of the ketogenic diet. Epilepsia. 2008;49(Suppl 8):80-82.
Hu ZL, Sun T, Lu M, Ding JH, Du RH, Hu G. Kir6.1/K-ATP channel on astrocytes protects against dopaminergic neurodegeneration in the MPTP mouse model of Parkinson's disease via promoting mitophagy. Brain Behav Immun. 2019;81:509-522.
Wang S, Wang B, Shang D, Zhang K, Yan X, Zhang X. Ion Channel Dysfunction in Astrocytes in Neurodegenerative Diseases. Front Physiol. 2022;13:814285.
Grizzanti J, Moritz WR, Pait MC, Stanley M, Kaye SD, Carroll CM, et al. KATP channels are necessary for glucose-dependent increases in amyloid-beta and Alzheimer's disease-related pathology. JCI Insight. 2023;8:e162454.
Rosenblum WI. ATP-sensitive potassium channels in the cerebral circulation. Stroke. 2003;34:1547-1552,
Malester B, Tong X, Ghiu I, Kontogeorgis A, Gutstein DE, Xu J, et al. Transgenic expression of a dominant negative K(ATP) channel subunit in the mouse endothelium: effects on coronary flow and endothelin-1 secretion. FASEB J. 2007;21:2162-2172.
Li Y, Aziz Q, Anderson N, Ojake L, Tinker A. Endothelial ATP-Sensitive Potassium Channel Protects Against the Development of Hypertension and Atherosclerosis. Hypertension. 2020;76:776-784.
Ishizaki E, Fukumoto M, Puro DG. Functional K(ATP) channels in the rat retinal microvasculature: topographical distribution, redox regulation, spermine modulation and diabetic alteration. J Physiol. 2009;587:2233-2253.
Li Q, Puro DG. Adenosine activates ATP-sensitive K(+) currents in pericytes of rat retinal microvessels: role of A1 and A2a receptors. Brain Res. 2001;907:93-99.
Nelson AR, Sagare MA, Wang Y, Kisler K, Zhao Z, Zlokovic BV. Channelrhodopsin Excitation Contracts Brain Pericytes and Reduces Blood Flow in the Aging Mouse Brain in vivo. Front Aging Neurosci. 2020;12:108.
Zhao G, Joca HC, Nelson MT, Lederer WJ. ATP- and voltage-dependent electro-metabolic signaling regulates blood flow in heart. Proc Natl Acad Sci U S A. 2020;117: 7461-7470.
Noma A. ATP-regulated K+ channels in cardiac muscle. Nature. 1983;305:147-148.
Zingman LV, Zhu Z, Sierra A, Stepniak E, Burnett CM, Maksymov G, et al. Exercise-induced expression of cardiac ATP-sensitive potassium channels promotes action potential shortening and energy conservation. J Mol Cell Cardiol. 2011;51:72-81.
Ashcroft FM. Adenosine 5'-triphosphate-sensitive potassium channels. Annu Rev Neurosci. 1988;11:97-118.
Shi NQ, Ye B, Makielski JC. Function and distribution of the SUR isoforms and splice variants. J Mol Cell Cardiol. 2005;39:51-60.
Gando I, Becerra Flores M, Chen IS, Yang HQ, Nakamura TY, Cardozo TJ, Coetzee WA. CL-705G: a novel chemical Kir6.2-specific K(ATP) channel opener. Front Pharmacol. 2023;14:1197257.
Flagg TP, Kurata HT, Masia R, Caputa G, Magnuson MA, Lefer DJ, et al. Differential structure of atrial and ventricular KATP: atrial KATP channels require SUR1. Circ Res. 2008;103:1458-1465.
Jiang C, Mochizuki S, Poole-Wilson PA, Harding SE, MacLeod KT. Effect of lemakalim on action potentials, intracellular calcium, and contraction in guinea pig and human cardiac myocytes. Cardiovasc Res. 1994;28:851-857.
Zunkler BJ, Henning B, Ott T, Hildebrandt AG, Fleck E. Effects of tolbutamide on ATP-sensitive K+ channels from human right atrial cardiac myocytes. Pharmacol Toxicol. 1997;80:69-75.
Fedorov VV, Glukhov AV, Ambrosi CM, Kostecki G, Chang R, Janks D, et al. Effects of KATP channel openers diazoxide and pinacidil in coronary-perfused atria and ventricles from failing and non-failing human hearts. J Mol Cell Cardiol. 2011;51:215-225.
Babenko AP, Gonzalez G, Aguilar-Bryan L, Bryan J. Reconstituted human cardiac KATP channels: functional identity with the native channels from the sarcolemma of human ventricular cells. Circ Res. 1998;83:1132-1143.
Bienengraeber M, Olson TM, Selivanov VA, Kathmann EC, O'Cochlain F, Gao F, et al. ABCC9 mutations identified in human dilated cardiomyopathy disrupt catalytic KATP channel gating. Nat Genet. 2004;36:382-387.
Subbotina E, Yang HQ, Gando I, Williams N, Sampson BA, Tang Y, Coetzee WA. Functional characterization of ABCC9 variants identified in sudden unexpected natural death. Forensic Sci Int. 2019;298:80-87.
Smith KJ, Chadburn AJ, Adomaviciene A, Minoretti P, Vignali L, Emanuele E, Tammaro P. Coronary spasm and acute myocardial infarction due to a mutation (V734I) in the nucleotide binding domain 1 of ABCC9. Int J Cardiol. 2013;68(4):3506-13.
Hu D, Barajas-Martinez H, Terzic A, Park S, Pfeiffer R, Burashnikov E, et al. ABCC9 is a novel Brugada and early repolarization syndrome susceptibility gene. Int J Cardiol. 2014;171:431-442.
Reyes S, Park S, Johnson BD, Terzic A, Olson TM. KATP channel Kir6.2 E23K variant overrepresented in human heart failure is associated with impaired exercise stress response. Hum Genet. 2009;126:779-789.
Sakura H, Wat N, Horton V, Millns H, Turner RC, Ashcroft FM. Sequence variations in the human Kir6.2 gene, a subunit of the beta-cell ATP-sensitive K-channel: no association with NIDDM in while Caucasian subjects or evidence of abnormal function when expressed in vitro. Diabetologia. 1996;39:1233-1236.
Igarashi W, Takagi D, Okada D, Kobayashi D, Oka M, Io T, et al. Bioinformatic Identification of Potential RNA Alterations on the Atrial Fibrillation Remodeling from Human Pulmonary Veins. Int J Mol Sci. 2023;24:10501.
Barajas-Martinez H, Hu D, Ferrer T, Onetti CG, Wu Y, Burashnikov E, et al. Molecular genetic and functional association of Brugada and early repolarization syndromes with S422L missense mutation in KCNJ8. Heart Rhythm. 2012;9:548-555.
Tester DJ, Tan BH, Medeiros-Domingo A, Song C, Makielski JC, Ackerman MJ. Loss-of-function mutations in the KCNJ8-encoded Kir6.1 K(ATP) channel and sudden infant death syndrome. Circ Cardiovasc Genet. 2011;4:510-515.
Vleugels A, Carmeliet E. Effect of hypoxia on the duration of the action potential in embryonic chick heart. Arch Int Physiol Biochim. 1973;81:775-777.
Vleugels A, Carmeliet E. The correlation between action potential duration and 42K-efflux in the hypoxic myocardium. Arch Int Physiol Biochim. 1976;84:547-548.
Vleugels A, Vereecke J, Carmeliet E. The effect of mild hypoxia on the ionic currents in cardiac muscle. Arch Int Physiol Biochim. 1978;86:1171-1172.
Vleugels A, Vereecke J, Carmeliet E. Ionic currents during hypoxia in voltage-clamped cat ventricular muscle. Circ Res. 1980;47:501-508.
Vereecke J, van der Heyden G, Isenberg G, Carmeliet E. Voltage clamp analysis of the effect of dinitrophenol on single- pig myocytes. Arch Int Physiol Biochim. 1981;89:P35-P36.
Trube G, Hescheler J. Inward-rectifying channels in isolated patches of the heart cell membrane: ATP-dependence and comparison with cell-attached patches. Pflugers Arch. 1984;401:178-184.
Schmid-Antomarchi H, de Weille J, Fosset M, Lazdunski M. The antidiabetic sulfonylurea glibenclamide is a potent blocker of the ATP-modulated K+ channel in insulin secreting cells. Biochem Biophys Res Commun. 1987;146:21-25.
Zunkler BJ, Lenzen S, Manner K, Panten U, Trube G. Concentration-dependent effects of tolbutamide, meglitinide, glipizide, glibenclamide and diazoxide on ATP-regulated K+ currents in pancreatic B-cells. Naunyn Schmiedebergs Arch Pharmacol. 1988;337:225-230.
Ripoll C, Lederer WJ, Nichols CG. On the mechanism of inhibition of KATP channels by glibenclamide in rat ventricular myocytes. J Cardiovasc Electrophysiol. 1993;4:38-47.
Kantor PF, Coetzee WA, Carmeliet EE, Dennis SC, Opie LH. Reduction of ischemic K+ loss and arrhythmias in rat hearts. Effect of glibenclamide, a sulfonylurea. Circ Res. 1990;66:478-485.
Wilde AA, Escande D, Schumacher CA, Thuringer D, Mestre M, Fiolet JW. Glibenclamide inhibition of ATP-sensitive K+ channels and ischemia-induced K+ accumulation in the mammalian heart. Pflugers Arch. 1989;414(Suppl 1):S176.
Grover GJ, Sleph PG, Dzwonczyk S. Pharmacologic profile of cromakalim in the treatment of myocardial ischemia in isolated rat hearts and anesthetized dogs. J Cardiovasc Pharmacol. 1990;16:853-864.
Grover GJ, Sleph PG, Parham CS. Nicorandil improves postischemic contractile function independently of direct myocardial effects. J Cardiovasc Pharmacol. 1990;15:698-705.
Gross GJ, Warltier DC, Hardman HF. Comparative effects of nicorandil, a nicotinamide nitrate derivative, and nifedipine on myocardial reperfusion injury in dogs. J Cardiovasc Pharmacol. 1987;10:535-542.
Rubin AA, Roth FE, Taylor RM, Rosenkilde H. Pharmacology of diazoxide, an antihypertensive, nondiuretic benzothiadiazine. J Pharmacol Exp Ther. 1962;136:344-352.
Okun R, Wilson WR, Gelfand MD. The Hyperglycemic Effect of Hypotensive Drugs. J Chronic Dis. 1964;17:31-39.
Scott JC, Cowley AW Jr. The effect of diazoxide on coronary blood flow. Am J Cardiol. 1969;24:865-869.
Garlid KD, Paucek P, Yarov-Yarovoy V, Sun X, Schindler PA. The mitochondrial KATP channel as a receptor for potassium channel openers. J Biol Chem. 1996;271:8796-8799.
Coetzee WA. Multiplicity of effectors of the cardioprotective agent, diazoxide. Pharmacol Ther. 2013;140:167-175.
Suzuki M, Sasaki N, Miki T, Sakamoto N, Ohmoto-Sekine Y, Tamagawa M, et al. Role of sarcolemmal K(ATP) channels in cardioprotection against ischemia/reperfusion injury in mice. J Clin Invest. 2002;109:509-516.
Wojtovich AP, Urciuoli WR, Chatterjee S, Fisher AB, Nehrke K, Brookes PS. Kir6.2 is not the mitochondrial KATP channel but is required for cardioprotection by ischemic preconditioning. Am J Physiol Heart Circ Physiol. 2013;304:H1439-1445.
Suzuki M, Saito T, Sato T, Tamagawa M, Miki T, Seino S, Nakaya H. Cardioprotective effect of diazoxide is mediated by activation of sarcolemmal but not mitochondrial ATP-sensitive potassium channels in mice. Circulation. 2003;107:682-685.
Wan TC, Ge ZD, Tampo A, Mio Y, Bienengraeber MW, Tracey WR, et al. The A3 adenosine receptor agonist CP-532,903 [N6-(2,5-dichlorobenzyl)-3'-aminoadenosine-5'-N-methylcarboxamide] protects against myocardial ischemia/reperfusion injury via the sarcolemmal ATP-sensitive potassium channel. J Pharmacol Exp Ther. 2008;324:234-243.
Yang HQ, Foster MN, Jana K, Ho J, Rindler MJ, Coetzee WA. Plasticity of sarcolemmal KATP channel surface expression: relevance during ischemia and ischemic preconditioning. Am J Physiol Heart Circ Physiol. 2016;310:H1558-1566.
Paggio A, Checchetto V, Campo A, Menabo R, Di Marco G, Di Lisa F, et al. Identification of an ATP-sensitive potassium channel in mitochondria. Nature. 2019;572:609-613.
Zeitz C, Mejecase C, Michiels C, Condroyer C, Wohlschlegel J, Foussard M, et al. Mutated CCDC51 Coding for a Mitochondrial Protein, MITOK Is a Candidate Gene Defect for Autosomal Recessive Rod-Cone Dystrophy. Int J Mol Sci. 2021;22:7875.
Ichikawa Y, Bayeva M, Ghanefar M, Potini V, Sun L, Mutharasan RK, et al. Disruption of ATP-binding cassette B8 in mice leads to cardiomyopathy through a decrease in mitochondrial iron export. Proc Natl Acad Sci U S A. 2012;109:4152-4157.
Opie LH. Metabolism of the heart in health and disease. I. Am Heart J. 1968;76:685-698.
Hill JL, Gettes LS. Effect of acute coronary artery occlusion on local myocardial extracellular K+ activity in swine. Circulation. 1980;61:768-778.
Weiss J, Shine KI. Extracellular potassium accumulation during myocardial ischemia: implications for arrhythmogenesis. J Mol Cell Cardiol. 1981;13:699-704.
Kleber AG. Resting membrane potential, extracellular potassium activity, and intracellular sodium activity during acute global ischemia in isolated perfused guinea pig hearts. Circ Res. 1983;52:442-450.
Katz AM, Hecht HH. Editorial: the early "pump" failure of the ischemic heart. Am J Med. 1969;47:497-502.
Wilde AA, Escande D, Schumacher CA, Thuringer D, Mestre M, Fiolet JW, Janse MJ. Potassium accumulation in the globally ischemic mammalian heart. A role for the ATP-sensitive potassium channel. Circ Res. 1990;67:835-843.
Niho T, Notsu T, Ishikawa H, Funato H, Yamazaki M, Takahashi H, et al. [Study of mechanism and effect of sodium 5-hydroxydecanoate on experimental ischemic ventricular arrhythmia]. Nihon yakurigaku zasshi. Folia pharmacologica Japonica. 1987;89:155-167. (in Japanese).
Sakamoto K, Yamazaki J, Nagao T. 5-hydroxydecanoate selectively reduces the initial increase in extracellular K+ in ischemic guinea-pig heart. Eur J Pharmacol. 1998;348:31-35.
Findlay I. Sulphonylurea drugs no longer inhibit ATP-sensitive K+ channels during metabolic stress in cardiac muscle. J Pharmacol Exp Ther. 1993;266:456-467.
Saito T, Sato T, Miki T, Seino S, Nakaya H. Role of ATP-sensitive K+ channels in electrophysiological alterations during myocardial ischemia: a study using Kir6.2-null mice. Am J Physiol Heart Circ Physiol. 2005;288:H352-357.
Youssef N, Campbell S, Barr A, Gandhi M, Hunter B, Dolinksy V, et al. Hearts lacking plasma-membrane KATP channels display changes in basal aerobic metabolic substrate preference and AMPK activity. Am J Physiol Heart Circ Physiol. 2017;313(3):H469-H478.
Tinker A, Aziz Q, Thomas A. The role of ATP-sensitive potassium channels in cellular function and protection in the cardiovascular system. Br J Pharmacol. 2014;171:12-23.
Yang X, Cohen MV, Downey JM. Mechanism of cardioprotection by early ischemic preconditioning. Cardiovasc Drugs Ther. 2010;24:225-234.
Hu K, Duan D, Li GR, Nattel S. Protein kinase C activates ATP-sensitive K+ current in human and rabbit ventricular myocytes. Circ Res. 1996;78:492-498.
Light PE, Bladen C, Winkfein RJ, Walsh MP, French RJ. Molecular basis of protein kinase C-induced activation of ATP-sensitive potassium channels. Proc Natl Acad Sci U S A. 2000;97:9058-9063.
Hu K, Li GR, Nattel S. Adenosine-induced activation of ATP-sensitive K+ channels in excised membrane patches is mediated by PKC. Am J Physiol. 1999;276:H488-495.
Ito K, Sato T, Arita M. Protein kinase C isoform-dependent modulation of ATP-sensitive K+ channels during reoxygenation in guinea-pig ventricular myocytes. J Physiol. 2001;532:165-174.
Zhuang JG, Zhang Y, Zhou ZN. Hypoxic preconditioning upregulates KATP channels through activation of protein kinase C in rat ventricular myocytes. Acta Pharmacol Sin. 2000;21:845-849.
Aizawa K, Turner LA, Weihrauch D, Bosnjak ZJ, Kwok WM. Protein kinase C-epsilon primes the cardiac sarcolemmal adenosine triphosphate-sensitive potassium channel to modulation by isoflurane. Anesthesiology. 2004;101:381-389.
Turner LA, Fujimoto K, Suzuki A, Stadnicka A, Bosnjak ZJ, Kwok WM. The interaction of isoflurane and protein kinase C-activators on sarcolemmal KATP channels. Anesth Analg. 2005;100:1680-1686.
Edwards AG, Rees ML, Gioscia RA, Zachman DK, Lynch JM, Browder JC, et al. PKC-permitted elevation of sarcolemmal KATP concentration may explain female-specific resistance to myocardial infarction. J Physiol. 2009;587:5723-5737.
Turrell HE, Rodrigo GC, Norman RI, Dickens M, Standen NB. Phenylephrine preconditioning involves modulation of cardiac sarcolemmal K(ATP) current by PKC delta, AMPK and p38 MAPK. J Mol Cell Cardiol. 2011;51:370-380.
Storey NM, Stratton RC, Rainbow RD, Standen NB, Lodwick D. Kir6.2 limits Ca(2+) overload and mitochondrial oscillations of ventricular myocytes in response to metabolic stress. Am J Physiol Heart Circ Physiol. 2013;305:H1508-1518.
Tuncay E, Gando I, Huo JY, Yepuri G, Sampler N, Turan B, et al. The cardioprotective role of sirtuins is mediated in part by regulating K(ATP) channel surface expression. Am J Physiol Cell Physiol. 2023;324:C1017-C1027.
Calvert JW, Gundewar S, Jha S, Greer JJ, Bestermann WH, Tian R, Lefer DJ. Acute metformin therapy confers cardioprotection against myocardial infarction via AMPK-eNOS-mediated signaling. Diabetes. 2008;57:696-705.
Lopaschuk GD. AMP-activated protein kinase control of energy metabolism in the ischemic heart. Int J Obes. 2008;32(Suppl 4):S29-35.
Russell RR 3rd, Li J, Coven DL, Pypaert M, Zechner C, Palmeri M, et al. AMP-activated protein kinase mediates ischemic glucose uptake and prevents postischemic cardiac dysfunction, apoptosis, and injury. J Clin Invest. 2004;114:495-503.
Du RH, Dai T, Cao WJ, Lu M, Ding JH, Hu G. Kir6.2-containing ATP-sensitive K(+) channel is required for cardioprotection of resveratrol in mice. Cardiovasc Diabetol. 2014;13:35.
Sukhodub A, Jovanovic S, Du Q, Budas G, Clelland AK, Shen M, et al. AMP-activated protein kinase mediates preconditioning in cardiomyocytes by regulating activity and trafficking of sarcolemmal ATP-sensitive K(+) channels. J Cell Physiol. 2007;210:224-236.
Yoshida H, Bao L, Kefaloyianni E, Taskin E, Okorie U, Hong M, et al. AMP-activated protein kinase connects cellular energy metabolism to KATP channel function. J Mol Cell Cardiol. 2012;52:410-418.
Lim A, Park SH, Sohn JW, Jeon JH, Park JH, Song DK, et al. Glucose deprivation regulates KATP channel trafficking via AMP-activated protein kinase in pancreatic beta-cells. Diabetes. 2009;58:2813-2819.
Grant BD, Donaldson JG. Pathways and mechanisms of endocytic recycling. Nat Rev Mol Cell Biol. 2009;10:597-608.
Hong TT, Shaw RM. Ion Channel Trafficking. In: Pitt GS, editor. Ion Channels in Health and Disease. Boston: Academic Press; 2016; pp. 25-51.
Yang HQ, Jana K, Rindler MJ, Coetzee WA. The trafficking protein, EHD2, positively regulates cardiac sarcolemmal K(ATP) channel surface expression: role in cardioprotection. FASEB J. 2018;32:1613-1625.
Sierra A, Zhu Z, Sapay N, Sharotri V, Kline CF, Luczak ED, et al. Regulation of cardiac ATP-sensitive potassium channel surface expression by calcium/calmodulin-dependent protein kinase II. J Biol Chem. 2013;288:1568-1581.
Li J, Marionneau C, Koval O, Zingman L, Mohler PJ, Nerbonne JM, Anderson ME. Calmodulin kinase II inhibition enhances ischemic preconditioning by augmenting ATP-sensitive K+ current. Channels (Austin). 2007;1:387-394.
Zingman LV, Hodgson DM, Bast PH, Kane GC, Perez-Terzic C, Gumina RJ, et al. Kir6.2 is required for adaptation to stress. Proc Natl Acad Sci U S A. 2002;99:13278-13283.
Isidoro Tavares N, Philip-Couderc P, Papageorgiou I, Baertschi AJ, Lerch R, Montessuit C. Expression and function of ATP-dependent potassium channels in late post-infarction remodeling. J Mol Cell Cardiol. 2007;42:1016-1025.
Akao M, Otani H, Horie M, Takano M, Kuniyasu A, Nakayama H, et al. Myocardial ischemia induces differential regulation of KATP channel gene expression in rat hearts. J Clin Invest. 1997;100:3053-3059.
Han Y, Duan B, Wu J, Zheng Y, Gu Y, Cai X, et al. Corrigendum: Analysis of time series gene expression and DNA methylation reveals the molecular features of myocardial infarction progression. Front Cardiovasc Med. 2022;9:990217.
Han Y, Duan B, Wu J, Zheng Y, Gu Y, Cai X, et al. Analysis of Time Series Gene Expression and DNA Methylation Reveals the Molecular Features of Myocardial Infarction Progression. Front Cardiovasc Med. 2022;9:912454.
Effectiveness of intravenous thrombolytic treatment in acute myocardial infarction. Gruppo Italiano per lo Studio della Streptochinasi nell'Infarto Miocardico (GISSI). Lancet. 1986;1:397-402
Malacrida R, Genoni M, Maggioni AP, Spataro V, Parish S, Palmer A, et al. A comparison of the early outcome of acute myocardial infarction in women and men. The Third International Study of Infarct Survival Collaborative Group. N Engl J Med. 1998;338:8-14.
Hudson MP, Granger CB, Topol EJ, Pieper KS, Armstrong PW, Barbash GI, et al. Early reinfarction after fibrinolysis: experience from the global utilization of streptokinase and tissue plasminogen activator (alteplase) for occluded coronary arteries (GUSTO I) and global use of strategies to open occluded coronary arteries (GUSTO III) trials. Circulation. 2001;104:1229-1235.
Barbagelata A, Granger CB, Topol EJ, Worley SJ, Kereiakes DJ, George BS, et al. Frequency, significance, and cost of recurrent ischemia after thrombolytic therapy for acute myocardial infarction. TAMI Study Group. Am J Cardiol. 1995;76:1007-1013.
Dhar-Chowdhury P, Malester B, Rajacic P, Coetzee WA. The regulation of ion channels and transporters by glycolytically derived ATP. Cell Mol Life Sci. 2007;64:3069-3083.
Green DE, Murer E, Hultin HO, Richardson SH, Salmon B, Brierley GP, Baum H. Association of integrated metabolic pathways with membranes. I. Glycolytic enzymes of the red blood corpuscle and yeast. Arch Biochem Biophys. 1965;112:635-647.
McDaniel CF, Kirtley ME, Tanner MJ. The interaction of glyceraldehyde 3-phosphate dehydrogenase with human erythrocyte membranes. J Biol Chem. 1974;249:6478-6485.
Tillman W, Cordua A, Schroter W. Organization of enzymes of glycolysis and of glutathione metabolism in human red cell membranes. Biochim Biophys Acta. 1975;382:157-171.
Pierce GN, Philipson KD. Binding of glycolytic enzymes to cardiac sarcolemmal and sarcoplasmic reticular membranes. J Biol Chem. 1985;260:6862-6870.
Daum G, Keller K, Lange K. Association of glycolytic enzymes with the cytoplasmic side of the plasma membrane of glioma cells. Biochim Biophys Acta. 1988;939:277-281.
Xu KY, Becker LC. Ultrastructural localization of glycolytic enzymes on sarcoplasmic reticulum vesticles. J Histochem Cytochem. 1998;46:419-427.
Hsu SC, Molday RS. Glyceraldehyde-3-phosphate dehydrogenase is a major protein associated with the plasma membrane of retinal photoreceptor outer segments. J Biol Chem. 1990;265:13308-13313.
Moses V, Lonberg-Holm KK. The study of metabolic compartmentalization. J Theor Biol. 1966;10:336-351.
Bricknell OL, Opie LH. Glycolytic ATP and its production during ischemia in isolated Langendorff-perfused rat hearts. Recent Adv Stud Cardiac Struct Metab. 1976;11:509-519.
Paul RJ. Functional compartmentalization of oxidative and glycolytic metabolism in vascular smooth muscle. Am J Physiol. 1983;244:C399-409.
Geisbuhler T, Altschuld RA, Trewyn RW, Ansel AZ, Lamka K, Brierley GP. Adenine nucleotide metabolism and compartmentalization in isolated adult rat heart cells. Circ Res. 1984;54:536-546.
Davidheiser S, Joseph J, Davies RE. Separation of aerobic glycolysis from oxidative metabolism and contractility in rat anococcygeus muscle. Am J Physiol. 1984;247:C335-341.
Andersen BJ, Marmarou A. Functional compartmentalization of energy production in neural tissue. Brain Res. 1992;585:190-195.
Korge P, Campbell KB. The importance of ATPase microenvironment in muscle fatigue: a hypothesis. Int J Sports Med. 1995;16:172-179.
Dizon J, Burkhoff D, Tauskela J, Whang J, Cannon P, Katz J. Metabolic inhibition in the perfused rat heart: evidence for glycolytic requirement for normal sodium homeostasis. Am J Physiol. 1998;274:H1082-1089.
Malaisse WJ, Sener A, Levy J, Herchuelz A. The stimulus-secretion coupling of glucose-induced insulin release. XXII. Qualitative and quantitative aspects of glycolysis in isolated islets. Acta Diabetol Lat. 1976;13:202-215.
Weiss JN, Lamp ST. Glycolysis preferentially inhibits ATP-sensitive K+ channels in isolated guinea pig cardiac myocytes. Science. 1987;238:67-69.
Weiss JN, Lamp ST. Cardiac ATP-sensitive K+ channels. Evidence for preferential regulation by glycolysis. J Gen Physiol. 1989;94:911-935.
Dukes ID, McIntyre MS, Mertz RJ, Philipson LH, Roe MW, Spencer B, Worley JF 3rd. Dependence on NADH produced during glycolysis for beta-cell glucose signaling. J Biol Chem. 1994;269:10979-10982.
Mertz RJ, Worley JF, Spencer B, Johnson JH, Dukes ID. Activation of stimulus-secretion coupling in pancreatic beta-cells by specific products of glucose metabolism. Evidence for privileged signaling by glycolysis. J Biol Chem. 1996;271:4838-4845.
Lewandowski SL, Cardone RL, Foster HR, Ho T, Potapenko E, Poudel C, et al. Pyruvate Kinase Controls Signal Strength in the Insulin Secretory Pathway. Cell Metab. 2020;32:736-750.e5.
Merrins MJ, Corkey BE, Kibbey RG, Prentki M. Metabolic cycles and signals for insulin secretion. Cell Metab. 2022;34:947-968.
Hong M, Kefaloyianni E, Bao L, Malester B, Delaroche D, Neubert TA, Coetzee WA. Cardiac ATP-sensitive K+ channel associates with the glycolytic enzyme complex. FASEB J. 2011;25:2456-2467.
Kefaloyianni E, Lyssand JS, Moreno C, Delaroche D, Hong M, Fenyo D, et al. Comparative proteomic analysis of the ATP-sensitive K+ channel complex in different tissue types. Proteomics. 2013;13:368-378.
Opie LH, Tuschmidt R, Bricknell O, Girardier L. Role of glycolysis in maintenance of the action potential duration and contractile activity in isolated perfused rat heart. J Physiol (Paris). 1980;76:821-829.
Opie LH, Sack MN. Metabolic plasticity and the promotion of cardiac protection in ischemia and ischemic preconditioning. J Mol Cell Cardiol. 2002;34:1077-1089.
Mallet RT, Hartman DA, Bunger R. Glucose requirement for postischemic recovery of perfused working heart. Eur J Biochem. 1990;188:481-493.
Sako EY, Kingsley-Hickman PB, From AH, Ugurbil K, Foker JE. Substrate effects in the post-ischemic myocardium. J Surg Res. 1988;44:430-435.
Schaefer S, Prussel E, Carr LJ. Requirement of glycolytic substrate for metabolic recovery during moderate low flow ischemia. J Mol Cell Cardiol. 1995;27:2167-2176.
Opie LH, Bricknell OL. Role of glycolytic flux in effect of glucose in decreasing fatty-acid-induced release of lactate dehydrogenase from isolated coronary ligated rat heart. Cardiovasc Res. 1979;13:693-702.
Whitehouse S, Cooper RH, Randle PJ. Mechanism of activation of pyruvate dehydrogenase by dichloroacetate and other halogenated carboxylic acids. Biochem J. 1974;141:761-774.
Wang P, Lloyd SG, Chatham JC. Impact of high glucose/high insulin and dichloroacetate treatment on carbohydrate oxidation and functional recovery after low-flow ischemia and reperfusion in the isolated perfused rat heart. Circulation. 2005;111:2066-2072.
Hatao K, Kaku K, Matsuda M, Tsuchiya M, Kaneko T. Sulfonylurea stimulates liver fructose-2,6-bisphosphate formation in proportion to its hypoglycemic action. Diabetes Res Clin Pract. 1985;1:49-53.
Schaffer SW, Tan BH, Mozaffari MS. Effect of glyburide on myocardial metabolism and function. Am J Med. 1985;79:48-52.
Carvalho-Martini M, de Oliveira DS, Suzuki-Kemmelmeier F, Bracht A. The action of glibenclamide on glycogen catabolism and related parameters in the isolated perfused rat liver. Res Commun Mol Pathol Pharmacol. 2006;119:115-126.
Salani B, Ravera S, Fabbi P, Garibaldi S, Passalacqua M, Brunelli C, et al. Glibenclamide Mimics Metabolic Effects of Metformin in H9c2 Cells. Cell Physiol Biochem. 2017;43:879-890.
Doliba NM, Vatamaniuk MZ, Buettger CW, Qin W, Collins HW, Wehrli SL, et al. Differential effects of glucose and glyburide on energetics and Na+ levels of betaHC9 cells: nuclear magnetic resonance spectroscopy and respirometry studies. Diabetes. 2003;52:394-402.
Arrell DK, Park S, Yamada S, Alekseev AE, Garmany A, Jeon R, et al. KATP channel dependent heart multiome atlas. Sci Rep. 2022;12:7314.
Constantino NJ, Carroll CM, Williams HC, Yuede CM, Sheehan PW, Andy Snipes J, et al. Kir6.2-K (ATP) channels alter glycolytic flux to modulate cortical activity, arousal, and sleep-wake homeostasis. bioRxiv [Preprint]. 2024:2024.02.23.581817. doi: 10.1101/2024.02.23.581817.
Oluwadare J, Cabodevilla AG, Son NH, Hu Y, Mullick AE, Verano M, et al. Blocking Lipid Uptake Pathways Does not Prevent Toxicity in Adipose Triglyceride Lipase (ATGL) Deficiency. J Lipid Res. 2022;63:100274.