Can probiotics win the battle against environmental endocrine disruptors?

  • Çiğdem Sevim University of Kastamonu - Faculty of Medicine, Deparment of Medical Pharmacology
  • Mehtap Kara University of Istanbul - Faculty of Pharmacy, Deparment of Pharmaceutical Toxicology
Keywords: Endocrine-disrupting compounds, pesticides, phthalates, probiotics

Abstract


Compounds that have negative effects on the endocrine system are called endocrine-disrupting compounds (EDCs). There are several different types of compounds, with several different usage areas in the environment, which can be classified as EDCs. These chemicals have a wide range of negative health effects in organisms, depending on their target hormone system. EDCs are among the most popular topics of scientific research, as they are widely used and organisms are frequently exposed to these chemicals. There are various exposure routes for EDCs, such as oral, inhalation and dermal exposure. Parabens, phenolic compounds, phthalates, and pesticides are the most common EDCs. Nowadays, intestinal microorganism distribution, probiotics, and food supplements that regulate these microorganisms and their protective effects against various harmful chemicals attract attention. For this reason, many studies have been carried out in this field and certain diet schemes have been created according to the results of these studies. In fact, probiotics are preferred in order to reduce and eliminate the negative effects of harmful chemicals and to ensure that the organism reacts strongly in these conditions. In this review, we will focus on EDCs, their health effects and positive effects of probiotics on EDCs exposure conditions.

References

Ana R, Nicholas O, Serrano FO. Human exposure to endocrine-disrupting chemicals: Assessing the total estrogenic xenobiotic burden. TrAC Trends in Analytical Chemistry. 1997 16:613-619. doi:10.1016/S0165-9936(97)00101-5.

Darbre PD. Chemical components of plastics as endocrine disruptors: Overview and commentary. Birth Defects Res. 2020 Oct;112(17):1300-1307. doi: 10.1002/bdr2.1778.

Kahn LG , Philippat C, Nakayama SF,  Slama R,  Trasande L Endocrine-disrupting chemicals: implications for human health. The Lancet Diabetes & Endocrinology. 2020 8:703-718. doi:10.1016/S2213-8587(20)30129-7.

Golub M, Doherty J. Triphenyltin as a potential human endocrine disruptor. J Toxicol Environ Health B Crit Rev. 2004 Jul-Aug;7(4):281-95. doi: 10.1080/10937400490452705.

Pironti C, Maria R, Proto A, Bianco PM, Montano L, Motta O. Endocrine-Disrupting Compounds: An Overview on Their Occurrence in the Aquatic Environment and Human Exposure. Water. 2021 May 13: 1347. doi:10.3390/w13101347.

Annamalai J, Namasivayam V. Endocrine disrupting chemicals in the atmosphere: Their effects on humans and wildlife. Environ Int. 2015 Mar;76:78-97. doi: 10.1016/j.envint.2014.12.006.

Dziewirska E, Hanke W, Jurewicz J. Environmental non-persistent endocrine-disrupting chemicals exposure and reproductive hormones levels in adult men. Int J Occup Med Environ Health. 2018 Oct 23;31(5):551-573. doi: 10.13075/ijomeh.1896.01183.

Garcia-Gonzalez N, Prete R, Perugini M, Merola C, Battista N, Corsetti A. Probiotic antigenotoxic activity as a DNA bioprotective tool: a minireview with focus on endocrine disruptors. FEMS Microbiol Lett. 2020 Feb 1;367(3):fnaa041. doi: 10.1093/femsle/fnaa041.

Roman P, Cardona D, Sempere L, Carvajal F. Microbiota and organophosphates. Neurotoxicology. 2019 Dec;75:200-208. doi: 10.1016/j.neuro.2019.09.013.

Giommi C, Habibi HR, Candelma M, Carnevali O, Maradonna F. Probiotic Administration Mitigates Bisphenol A Reproductive Toxicity in Zebrafish. Int J Mol Sci. 2021 Aug 27;22(17):9314. doi: 10.3390/ijms22179314.

Neuman H, Debelius JW, Knight R, Koren O. Microbial endocrinology: the interplay between the microbiota and the endocrine system. FEMS Microbiol Rev. 2015 Jul;39(4):509-21. doi: 10.1093/femsre/fuu010.

Elahi S, Ertelt JM, Kinder JM, Jiang TT, Zhang X, Xin L, Chaturvedi V, Strong BS, Qualls JE, Steinbrecher KA, Kalfa TA, Shaaban AF, Way SS. Immunosuppressive CD71+ erythroid cells compromise neonatal host defence against infection. Nature. 2013 Dec 5;504(7478):158-62. doi: 10.1038/nature12675.

Lyte M, Ernst S. Catecholamine induced growth of gram negative bacteria. Life Sci. 1992;50(3):203-12. doi: 10.1016/0024-3205(92)90273-r.

Abisado RG, Benomar S, Klaus JR, Dandekar AA, Chandler JR. Bacterial Quorum Sensing and Microbial Community Interactions. mBio. 2018 May 22;9(3):e02331-17. doi: 10.1128/mBio.02331-17.

Hegde M, Wood TK, Jayaraman A. The neuroendocrine hormone norepinephrine increases Pseudomonas aeruginosa PA14 virulence through the las quorum-sensing pathway. Appl Microbiol Biotechnol. 2009 Sep;84(4):763-76. doi: 10.1007/s00253-009-2045-1.

Wichmann A, Allahyar A, Greiner TU, Plovier H, Lundén GÖ, Larsson T, Drucker DJ, Delzenne NM, Cani PD, Bäckhed F. Microbial modulation of energy availability in the colon regulates intestinal transit. Cell Host Microbe. 2013 Nov 13;14(5):582-90. doi: 10.1016/j.chom.2013.09.012.

Vandenberghe, Luciana & Spier, Michele & Medeiros, Adriane & Yamaguishi, Caroline & De Dea Lindner, Juliano & Pandey, Ashok & Thomaz-Soccol, Vanete. The Potential of Probiotics: A Review. Food Technology and Biotechnology . 2010 June 48 (4):413–434.

Zommiti M, Feuilloley MGJ, Connil N. Update of Probiotics in Human World: A Nonstop Source of Benefactions till the End of Time. Microorganisms. 2020 Nov 30;8(12):1907. doi: 10.3390/microorganisms8121907.

Hampl R, Stárka L. Endocrine disruptors and gut microbiome interactions. Physiol Res. 2020 Sep 30;69(Suppl 2):S211-S223. doi: 10.33549/physiolres.934513.

Knezevic J, Starchl C, Tmava Berisha A, Amrein K. Thyroid-Gut-Axis: How Does the Microbiota Influence Thyroid Function? Nutrients. 2020 Jun 12;12(6):1769. doi: 10.3390/nu12061769.

Fröhlich E, Wahl R. Microbiota and Thyroid Interaction in Health and Disease. Trends Endocrinol Metab. 2019 Aug;30(8):479-490. doi: 10.1016/j.tem.2019.05.008.

Talebi S, Karimifar M, Heidari Z, Mohammadi H, Askari G. The effects of synbiotic supplementation on thyroid function and inflammation in hypothyroid patients: A randomized, double‑blind, placebo‑controlled trial. Complement Ther Med. 2020 Jan;48:102234. doi: 10.1016/j.ctim.2019.102234.

Javurek AB, Spollen WG, Johnson SA, Bivens NJ, Bromert KH, Givan SA, Rosenfeld CS. Effects of exposure to bisphenol A and ethinyl estradiol on the gut microbiota of parents and their offspring in a rodent model. Gut Microbes. 2016 Nov;7(6):471-485. doi: 10.1080/19490976.2016.1234657.

Lai KP, Chung YT, Li R, Wan HT, Wong CK. Bisphenol A alters gut microbiome: Comparative metagenomics analysis. Environ Pollut. 2016 Nov;218:923-930. doi: 10.1016/j.envpol.2016.08.039.

Koestel ZL, Backus RC, Tsuruta K, Spollen WG, Johnson SA, Javurek AB, Ellersieck MR, Wiedmeyer CE, Kannan K, Xue J, Bivens NJ, Givan SA, Rosenfeld CS. Bisphenol A (BPA) in the serum of pet dogs following short-term consumption of canned dog food and potential health consequences of exposure to BPA. Sci Total Environ. 2017 Feb 1;579:1804-1814. doi: 10.1016/j.scitotenv.2016.11.162.

Jin Y, Zeng Z, Wu Y, Zhang S, Fu Z. Oral Exposure of Mice to Carbendazim Induces Hepatic Lipid Metabolism Disorder and Gut Microbiota Dysbiosis. Toxicol Sci. 2015 Sep;147(1):116-26. doi: 10.1093/toxsci/kfv115.

Roslund MI, Rantala S, Oikarinen S, Puhakka R, Hui N, Parajuli A, Laitinen OH, Hyöty H, Rantalainen AL, Sinkkonen A; ADELE team. Endocrine disruption and commensal bacteria alteration associated with gaseous and soil PAH contamination among daycare children. Environ Int. 2019 Sep;130:104894. doi: 10.1016/j.envint.2019.06.004.

Gao B, Bian X, Mahbub R, Lu K. Sex-Specific Effects of Organophosphate Diazinon on the Gut Microbiome and Its Metabolic Functions. Environ Health Perspect. 2017 Feb;125(2):198-206. doi: 10.1289/EHP202.

Hu J, Raikhel V, Gopalakrishnan K, Fernandez-Hernandez H, Lambertini L, Manservisi F, Falcioni L, Bua L, Belpoggi F, L Teitelbaum S, Chen J. Effect of postnatal low-dose exposure to environmental chemicals on the gut microbiome in a rodent model. Microbiome. 2016 Jun 14;4(1):26. doi: 10.1186/s40168-016-0173-2.

Kan H, Zhao F, Zhang XX, Ren H, Gao S. Correlations of Gut Microbial Community Shift with Hepatic Damage and Growth Inhibition of Carassius auratus Induced by Pentachlorophenol Exposure. Environ Sci Technol. 2015 Oct 6;49(19):11894-902. doi: 10.1021/acs.est.5b02990.

Mohammadi M, Shadnoush M, Sohrabvandi S, Yousefi M, Khorshidian N, Mortazavian AM. Probiotics as potential detoxification tools for mitigation of pesticides: a mini review. International Journal of Food Science & Technology. 2020 Nov:56. doi:10.1111/ijfs.14880.

Yuan X, Pan Z, Jin C, Ni Y, Fu Z, Jin Y. Gut microbiota: An underestimated and unintended recipient for pesticide-induced toxicity. Chemosphere. 2019 Jul;227:425-434. doi: 10.1016/j.chemosphere.2019.04.088.

Wang Y, Zhu H, Kannan K. A Review of Biomonitoring of Phthalate Exposures. Toxics. 2019 Apr 5;7(2):21. doi: 10.3390/toxics7020021.

Posnack NG. The adverse cardiac effects of Di(2-ethylhexyl)phthalate and Bisphenol A. Cardiovasc Toxicol. 2014 Dec;14(4):339-57. doi: 10.1007/s12012-014-9258-y.

Parks LG, Ostby JS, Lambright CR, Abbott BD, Klinefelter GR, Barlow NJ, Gray LE Jr. The plasticizer diethylhexyl phthalate induces malformations by decreasing fetal testosterone synthesis during sexual differentiation in the male rat. Toxicol Sci. 2000 Dec;58(2):339-49. doi: 10.1093/toxsci/58.2.339.

Gray LE Jr, Ostby J, Furr J, Price M, Veeramachaneni DN, Parks L. Perinatal exposure to the phthalates DEHP, BBP, and DINP, but not DEP, DMP, or DOTP, alters sexual differentiation of the male rat. Toxicol Sci. 2000 Dec;58(2):350-65. doi: 10.1093/toxsci/58.2.350.

Tian X, Yu Z, Feng P, Ye Z, Li R, Liu J, Hu J, Kakade A, Liu P, Li X. Lactobacillus plantarum TW1-1 Alleviates Diethylhexylphthalate-Induced Testicular Damage in Mice by Modulating Gut Microbiota and Decreasing Inflammation. Front Cell Infect Microbiol. 2019 Jun 26;9:221. doi: 10.3389/fcimb.2019.00221.

Baralić K, Živančević K, Javorac D, Buha Djordjevic A, Anđelković M, Jorgovanović D, Antonijević Miljaković E, Ćurčić M, Bulat Z, Antonijević B, Đukić-Ćosić D. Multi-strain probiotic ameliorated toxic effects of phthalates and bisphenol A mixture in Wistar rats. Food Chem Toxicol. 2020 Sep;143:111540. doi: 10.1016/j.fct.2020.111540.

Tang, Fiona & Lenzen, Manfred & McBratney, Alexander & Maggi, Federico. (2021). Risk of pesticide pollution at the global scale. Nature Geoscience. 14. 1-5. 10.1038/s41561-021-00712-5.

Trinder M, McDowell TW, Daisley BA, Ali SN, Leong HS, Sumarah MW, Reid G. Probiotic Lactobacillus rhamnosus Reduces Organophosphate Pesticide Absorption and Toxicity to Drosophila melanogaster. Appl Environ Microbiol. 2016 Sep 30;82(20):6204-6213. doi: 10.1128/AEM.01510-16.

Daisley BA, Trinder M, McDowell TW, Collins SL, Sumarah MW, Reid G. Microbiota-Mediated Modulation of Organophosphate Insecticide Toxicity by Species-Dependent Interactions with Lactobacilli in a Drosophila melanogaster Insect Model. Appl Environ Microbiol. 2018 Apr 16;84(9):e02820-17. doi: 10.1128/AEM.02820-17.

Harishankar MK, Sasikala C, Ramya M. Efficiency of the intestinal bacteria in the degradation of the toxic pesticide, chlorpyrifos. 3 Biotech. 2013 Apr;3(2):137-142. doi: 10.1007/s13205-012-0078-0.

Nowak A, Libudzisz Z. Ability of probiotic Lactobacillus casei DN 114001 to bind or/and metabolise heterocyclic aromatic amines in vitro. Eur J Nutr. 2009 Oct;48(7):419-27. doi: 10.1007/s00394-009-0030-1.

Oatley JT, Rarick MD, Ji GE, Linz JE. Binding of aflatoxin B1 to bifidobacteria in vitro. J Food Prot. 2000 Aug;63(8):1133-6. doi: 10.4315/0362-028x-63.8.1133.

Hernandez-Mendoza A, Guzman-de-Peña D, Garcia HS. Key role of teichoic acids on aflatoxin B binding by probiotic bacteria. J Appl Microbiol. 2009 Aug;107(2):395-403. doi: 10.1111/j.1365-2672.2009.04217.x.

Bagherpour Shamloo H, Golkari S, Faghfoori Z, Movassaghpour A, Lotfi H, Barzegari A, Yari Khosroushahi A. Lactobacillus Casei Decreases Organophosphorus Pesticide Diazinon Cytotoxicity in Human HUVEC Cell Line. Adv Pharm Bull. 2016 Jun;6(2):201-10. doi: 10.15171/apb.2016.028..

Lahtinen SJ, Haskard CA, Ouwehand AC, Salminen SJ, Ahokas JT. Binding of aflatoxin B1 to cell wall components of Lactobacillus rhamnosus strain GG. Food Addit Contam. 2004 Feb;21(2):158-64. doi: 10.1080/02652030310001639521.

Zhai Q, Wang G, Zhao J, Liu X, Narbad A, Chen YQ, Zhang H, Tian F, Chen W. Protective effects of Lactobacillus plantarum CCFM8610 against chronic cadmium toxicity in mice indicate routes of protection besides intestinal sequestration. Appl Environ Microbiol. 2014 Jul;80(13):4063-71. doi: 10.1128/AEM.00762-14.

Kamaladevi A, Ganguli A, Balamurugan K. Lactobacillus casei stimulates phase-II detoxification system and rescues malathion-induced physiological impairments in Caenorhabditis elegans. Comp Biochem Physiol C Toxicol Pharmacol. 2016 Jan;179:19-28. doi: 10.1016/j.cbpc.2015.08.004.

Wu G, Xiao X, Feng P, Xie F, Yu Z, Yuan W, Liu P, Li X. Gut remediation: a potential approach to reducing chromium accumulation using Lactobacillus plantarum TW1-1. Sci Rep. 2017 Nov 8;7(1):15000. doi: 10.1038/s41598-017-15216-9.

Bouhafs L, Moudilou EN, Exbrayat JM, Lahouel M, Idoui T. Protective effects of probiotic Lactobacillus plantarum BJ0021 on liver and kidney oxidative stress and apoptosis induced by endosulfan in pregnant rats. Ren Fail. 2015;37(8):1370-8. doi: 10.3109/0886022X.2015.1073543.

Villarini M, Caldini G, Moretti M, Trotta F, Pasquini R, Cenci G. Modulatory activity of a Lactobacillus casei strain on 1,2-dimethylhydrazine-induced genotoxicity in rats. Environ Mol Mutagen. 2008 Apr;49(3):192-9. doi: 10.1002/em.20367.

Anderson RC, Cookson AL, McNabb WC, Park Z, McCann MJ, Kelly WJ, Roy NC. Lactobacillus plantarum MB452 enhances the function of the intestinal barrier by increasing the expression levels of genes involved in tight junction formation. BMC Microbiol. 2010 Dec 9;10:316. doi: 10.1186/1471-2180-10-316.

Daisley BA, Trinder M, McDowell TW, Welle H, Dube JS, Ali SN, Leong HS, Sumarah MW, Reid G. Neonicotinoid-induced pathogen susceptibility is mitigated by Lactobacillus plantarum immune stimulation in a Drosophila melanogaster model. Sci Rep. 2017 Jun 2;7(1):2703. doi: 10.1038/s41598-017-02806-w.

Trinder M, McDowell TW, Daisley BA, Ali SN, Leong HS, Sumarah MW, Reid G. Probiotic Lactobacillus rhamnosus Reduces Organophosphate Pesticide Absorption and Toxicity to Drosophila melanogaster. Appl Environ Microbiol. 2016 Sep 30;82(20):6204-6213. doi: 10.1128/AEM.01510-16.

Bagherpour Shamloo H, Golkari S, Faghfoori Z, Movassaghpour A, Lotfi H, Barzegari A, Yari Khosroushahi A. Lactobacillus Casei Decreases Organophosphorus Pesticide Diazinon Cytotoxicity in Human HUVEC Cell Line. Adv Pharm Bull. 2016 Jun;6(2):201-10. doi: 10.15171/apb.2016.028.

Cardona D, López-Granero C, Cañadas F, Llorens J, Flores P, Pancetti F, Sánchez-Santed F. Dose-dependent regional brain acetylcholinesterase and acylpeptide hydrolase inhibition without cell death after chlorpyrifos administration. J Toxicol Sci. 2013;38(2):193-203. doi: 10.2131/jts.38.193.

Cardona F, Andrés-Lacueva C, Tulipani S, Tinahones FJ, Queipo-Ortuño MI. Benefits of polyphenols on gut microbiota and implications in human health. J Nutr Biochem. 2013 Aug;24(8):1415-22. doi: 10.1016/j.jnutbio.2013.05.001.

Jafari M, Salehi M, Ahmadi S, Asgari A, Abasnezhad M, Hajigholamali M. The role of oxidative stress in diazinon-induced tissues toxicity in Wistar and Norway rats. Toxicol Mech Methods. 2012 Oct;22(8):638-47. doi: 10.3109/15376516.2012.716090.

Abdel-Daim MM. Synergistic protective role of ceftriaxone and ascorbic acid against subacute diazinon-induced nephrotoxicity in rats. Cytotechnology. 2016 Mar;68(2):279-89. doi: 10.1007/s10616-014-9779-z.

Verma A, Shukla G. Synbiotic (Lactobacillus rhamnosus+Lactobacillus acidophilus+inulin) attenuates oxidative stress and colonic damage in 1,2 dimethylhydrazine dihydrochloride-induced colon carcinogenesis in Sprague-Dawley rats: a long-term study. Eur J Cancer Prev. 2014 Nov;23(6):550-9. doi: 10.1097/CEJ.0000000000000054.

Barman DN, Haque MA, Islam SM, Yun HD, Kim MK. Cloning and expression of ophB gene encoding organophosphorus hydrolase from endophytic Pseudomonas sp. BF1-3 degrades organophosphorus pesticide chlorpyrifos. Ecotoxicol Environ Saf. 2014 Oct;108:135-41. doi: 10.1016/j.ecoenv.2014.06.023.

Tang FL, Manfred L, McBratney A, Maggi F. Risk of pesticide pollution at the global scale. Nature Geoscience. 2021 March 14:1-5. doi:10.1038/s41561-021-00712-5.

Elsanhoty R, Salam S, Ramadan M, Badr FH. Detoxification of aflatoxin M1 in yoghurt using probiotics and lactic acid bacteria. Food Control. 2014 March 43:129-134.doi: 10.1016/j.foodcont.2014.03.002.

Martínez MP, Magnoli AP, González Pereyra ML, Cavaglieri L. Probiotic bacteria and yeasts adsorb aflatoxin M1 in milk and degrade it to less toxic AFM1-metabolites. Toxicon. 2019 Oct 25;172:1-7. doi: 10.1016/j.toxicon.2019.10.001.

Zhai Q, Tian F, Zhao J, Zhang H, Narbad A, Chen W. Oral Administration of Probiotics Inhibits Absorption of the Heavy Metal Cadmium by Protecting the Intestinal Barrier. Appl Environ Microbiol. 2016 Jun 30;82(14):4429-40. doi: 10.1128/AEM.00695-16.

Alizadeh AM, Hashempour F, Alizadeh-Sani M, Maleki M, Azizi-Lalabad M, Khosravi-Darani K. Inhibition of Clostridium botulinum and its toxins by probiotic bacteria and their metabolites: An update review. Quality Assurance and Safety of Crops & Foods. 2020 12:59-68. doi:10.15586/qas.v12iSP1.823.

Krutmann J. Pre- and probiotics for human skin. J Dermatol Sci. 2009 Apr;54(1):1-5. doi: 10.1016/j.jdermsci.2009.01.002.

Di Marzio L, Cinque B, Cupelli F, De Simone C, Cifone MG, Giuliani M. Increase of skin-ceramide levels in aged subjects following a short-term topical application of bacterial sphingomyelinase from Streptococcus thermophilus. Int J Immunopathol Pharmacol. 2008 Jan-Mar;21(1):137-43. doi: 10.1177/039463200802100115.

Lee DE, Huh CS, Ra J, Choi ID, Jeong JW, Kim SH, Ryu JH, Seo YK, Koh JS, Lee JH, Sim JH, Ahn YT. Clinical Evidence of Effects of Lactobacillus plantarum HY7714 on Skin Aging: A Randomized, Double Blind, Placebo-Controlled Study. J Microbiol Biotechnol. 2015 Dec 28;25(12):2160-8. doi: 10.4014/jmb.1509.09021.

Dixit Y, Wagle A, Vakil B. Patents in the Field of Probiotics, Prebiotics, Synbiotics: A Review. Journal of Food: Microbiology, Safety & Hygiene. 2016 01(02). doi:10.4172/2476-2059.1000111.

Published
2021/12/27
Section
Review articles