Overview of the progress and prospects of SMAC mimetics in cancers: Is it a silver bullet?

  • Elvina Almuradova Division of Medical Oncology, Department of Internal Medicine, Ege University Medical School
  • Durr-E-Shahwar Malik Institute of Pharmaceutical Sciences, PUMHSW
  • Sara Yousaf Institute of Pharmaceutical Sciences, PUMHSW
  • Ammad Ahmad Farooqi Institute of Biomedical and Genetic Engineering
Keywords: SMAC mimetics, cancer treatment, apoptosis, metastasis, tumor growth inhibition

Abstract


Loss of apoptosis results in the survival and uncontrolled proliferation of cancer cells. Basic and clinical researchers have dissected myriads of central regulators of apoptosis. Second mitochondria-derived activator of caspases (SMAC)/ direct inhibitor of apoptosis protein (IAP)-binding protein with low pI (DIABLO) has attracted phenomenal attention because of its amazing ability to trigger apoptotic death. Accordingly, different teams of interdisciplinary researchers are working on the design and development of SMAC mimetics which can significantly inhibit primary and secondary tumor growth.

References

Oskarsson T, Batlle E, Massague J. Metastatic stem cells: sources, niches, and vital pathways. Cell Stem Cell. 2014;14(3):306–321.

Rankin EB, Giaccia AJ. Cellular Microenvironment and Metastases. In: Niederhuber JE, Armitage JO, Doroshow JH, Kastan MB, Tepper JE. 6th edition. Abeloff’s Clinical Oncology. Elsevier Inc; 2020; p. 47–55.e3. doi:10.1016/b978-0-323-47674-4.00003-7.

Thiery JP, Acloque H, Huang RY, Nieto MA. Epithelial-mesenchymal transitions in development and disease. Cell. 2009 Nov 25;139(5):871-90.

Weinberg RA. Cancer: A Genetic Disorder. In: Mendelsohn AC, Howley A, Israel S, Gray JE, Lindsten T, editors. The Molecular Basis of Cancer. Philadelphia: Elsevier; 2008; p. 3-16.

Bric A, Miething C, Bialucha CU, Scuoppo C, Zender L, Krasnitz A, et al. Functional identification of tumor-suppressor genes through an in vivo RNA interference screen in a mouse lymphoma model. Cancer Cell. 2009;16:324–335.

Burkhart DL, Sage J. Cellular mechanisms of tumour suppression by the retinoblastoma gene. Nat Rev Cancer. 2008;8:671–682.

Page-McCaw A, Ewald AJ, Werb Z. Matrix metalloproteinases and the regulation of tissue remodelling. Nat Rev Mol Cell Biol. 2007 Mar;8(3):221-33.

Graham TA, Weaver C, Mao F, Kimelman D, Xu W. Crystal structure of a beta-catenin/Tcf complex. Cell. 2000;103:885-896.

Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012;21(3):309–322.

Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, et al. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008 May 16;133(4):704-15.

Zetter BR. Angiogenesis and tumor metastasis. Annu Rev Med. 1998;49:407-424.

Hurwitz HI. Introduction: targeting angiogenesis in cancer therapy. The Oncologist. 2004;9:1.

Kim J, Yao F, Xiao Z, Sun Y, Ma L. MicroRNAs and metastasis: small RNAs play big roles. Cancer Metastasis Rev. 2018 Mar;37(1):5-15.

Zobel K, Wang L, Varfolomeev E, Franklin MC, Elliott LO, Wallweber HJ, et al. Design, synthesis, and biological activity of a potent Smac mimetic that sensitizes cancer cells to apoptosis by antagonizing IAPs. ACS Chem Biol. 2006 Sep 19;1(8):525-33.

Gaither A, Porter D, Yao Y, Borawski J, Yang G, Donovan J, et al. A Smac mimetic rescue screen reveals roles for inhibitor of apoptosis proteins in tumor necrosis factor-alpha signaling. Cancer Res. 2007 Dec 15;67(24):11493-8.

Sun H, Nikolovska-Coleska Z, Yang CY, Xu L, Liu M, Tomita Y, et al. Structure-based design of potent, conformationally constrained Smac mimetics. J Am Chem Soc. 2004 Dec 29;126(51):16686-7.

Binder PS, Hashim YM, Cripe J, Buchanan T, Zamorano A, Vangveravong S, et al. The targeted SMAC mimetic SW IV-134 augments platinum-based chemotherapy in pre-clinical models of ovarian cancer. BMC Cancer. 2022 Mar 12;22(1):263.

Singh T, Neal A, Dibernardo G, Raheseparian N, Moatamed NA, Memarzadeh S. Efficacy of birinapant in combination with carboplatin in targeting platinum resistant epithelial ovarian cancers. Int J Oncol. 2022 Mar;60(3):35.

Lalaoui N, Merino D, Giner G, Vaillant F, Chau D, Liu L, et al. Targeting triple-negative breast cancers with the Smac-mimetic birinapant. Cell Death Differ. 2020;27:2768–2780.

Ding J, Qin D, Zhang Y, Li Q, Li Y, Li J. SMAC mimetic birinapant inhibits hepatocellular carcinoma growth by activating the cIAP1/TRAF3 signaling pathway. Mol Med Rep. 2020 Mar;21(3):1251-1257.

Yang L, Kumar B, Shen C, Zhao S, Blakaj D, Li T, et al. LCL161, a SMAC-mimetic, Preferentially Radiosensitizes Human Papillomavirus-negative Head and Neck Squamous Cell Carcinoma. Mol Cancer Ther. 2019 Jun;18(6):1025-1035.

Hernandez LF, Dull AB, Korrapati S, Annunziata CM. Smac-mimetic enhances antitumor effect of standard chemotherapy in ovarian cancer models via Caspase 8-independent mechanism. Cell Death Discov. 2021;7:134.

Zhang B, Yang C, Wang R, Wu J, Zhang Y, Liu D, et al. OTUD7B suppresses Smac mimetic-induced lung cancer cell invasion and migration via deubiquitinating TRAF3. J Exp Clin Cancer Res. 2020;39:244.

Majorini MT, Manenti G, Mano M, De Cecco L, Conti A, Pinciroli P, et al. cIAP1 regulates the EGFR/Snai2 axis in triple-negative breast cancer cells. Cell Death Differ. 2018 Dec;25(12):2147-2164.

Shekhar TM, Burvenich IJG, Harris MA, Rigopoulos A, Zanker D, Spurling A, et al. Smac mimetics LCL161 and GDC-0152 inhibit osteosarcoma growth and metastasis in mice. BMC Cancer. 2019 Sep 14;19(1):924.

Published
2022/08/31
Section
Review articles