Biochemical and hematological parameters in the 1st trimester of pregnancy
Abstract
The 1st trimester of pregnancy is accompanied with changes in different biochemical and hematological parameters. Analyses scheduled to be performed in the 1st trimester are complete blood count, blood group, Rh factor and the double test. Many experts also suggest the determination of lipid status parameters as a routine analysis in the early pregnancy. Reliable data about maternal and fetal health can be obtained by the assessment of the above-mentioned parameters. They may be helpful in assessing the risk for pregnancy complication development and/or perinatal adverse outcomes.
References
1. Soma-Pillay P, Nelson-Piercy C, Tolppanen H, Mebazaa A. Physiological changes in pregnancy. Cardiovasc J Afr. 2016;27:89–94.
2. Constantine MM. Physiologic and pharmacokinetic changes in pregnancy. Front Pharmacol. 2014;5:65.
3. American College of Obstetricians and Gynecologists [Internet]. Frequently asked questions. FAQ133. Pregnancy: Routine tests during pregnancy, 2021 [cited 2023 Feb 21]. Available from: https://www.acog.org/womens-health/faqs/routine-tests-during-pregnancy style="color: black;">.
4. American College of Obstetricians and Gynecologists [Internet]. Frequently asked questions. FAQ165. Pregnancy: Prenatal genetic screening tests, 2020 [cited 2023 Feb 21]. Available from: https://www.acog.org/womens-health/faqs/prenatal-genetic-screening-tests.
5. Diareme M, Karkalousos P, Theodoropoulos G, Strouzas S, Lazanas N. Lipid profile of healthy women during normal pregnancy. J Med Biochem. 2009;28:152-160.
6. Lu Y, Jia Z, Su S, Han L, Meng L, Tang G, et al. Establishment of trimester-specific reference intervals of serum lipids and the associations with pregnancy complications and adverse perinatal outcomes: a population-based prospective study. Ann Med. 2021;53:1632-1641.
7. Mossayebi E, Arab Z, Rahmaniyan M, Almassinokiani F, Kabir A. Prediction of neonates’ macrosomia with maternal lipid profile of healthy mothers. Pediatr Neonatol. 2014;55:28–34.
8. Spracklen CN, Smith CJ, Saftlas AF, Robinson JG, Ryckman KK. Maternal hyperlipidemia and the risk of preeclampsia: a metaanalysis. Am J Epidemiol. 2014;180:346–358.
9. Padoan A. Laboratory tests to monitoring physiological pregnancy. J Lab Precis Med. 2020;5:7.
10. Fisher AL, Nemeth E. Iron homeostasis during pregnancy. Am J Clin Nutr. 2017;106:1567S-74S.
11. Klajnbard A, Szecsi PB, Colov NP, Andersen MR, Jørgensen M, Bjørngaard B, et al. Laboratory reference intervals during pregnancy, delivery and the early postpartum period. Clin Chem Lab Med. 2010;48:237-48.
12. Fisher AL, Nemeth E. Iron homeostasis during pregnancy. Am J Clin Nutr. 2017;106:1567S-74S.
13. Sukrat B, Wilasrusmee C, Siribumrungwong B, McEvoy M, Okascharoen C, Attia J, Thakkinstian A. Hemoglobin concentration and pregnancy outcomes: a systematic review and meta-analysis. Biomed Res Int. 2013;2013:769057.
14. Australian Government Department of Health (AGDH) [Internet]. Clinical practice guidelines: pregnancy care, 2019 [cited 2023 Feb 21]. Available from: https://www.health.gov.au/sites/default/ files/pregnancy-care-guidelines_0.pdf.
15. Pacheco L, Costantine MM, Hankins GDV. Physiologic changes during pregnancy. In: Mattison DR, editor. Clincal Pharmacology During Pregnancy. San Diego: Academic Press; 2013; p. 5–14.
16. Dockree S, Shine B, Pavord S, Impey L, Vatish M. White blood cells in pregnancy: reference intervals for before and after delivery. EBioMedicine. 2021;74:103715.
17. Franchini M, Mengoli C, Lippi G. Relationship between ABO blood group and pregnancy complications: a systematic literature analysis. Blood Transfus. 2016;14:441-8.
18. Murray NA, Roberts IA. Haemolytic disease of the newborn. Arch Dis Child Fetal Neonatal Ed. 2007;92:83-8.
19. Clausen FB. Cell‐free fetal DNA and fetal blood group genotyping: non‐invasive prenatal testing. ISBT Sci Ser. 2019. doi: 10.1111/voxs.12521.
20. Mackie FL, Hemming K, Allen S, Morris RK, Kilby MD. The accuracy of cell-free fetal DNA-based non-invasive prenatal testing in singleton pregnancies: a systematic review and bivariate meta-analysis. BJOG. 2017;124:32-46.
21. Von Dadelszen P, Steegers EA, Duvekot JJ, Pijnenborg R. Preeclampsia. Lancet. 2010; 376: 631-644.
22. Ziolkowska K, Dydowicz P, Sobkowski M, Tobola-Wrobel K, Wysocka E, Pietryga M. The clinical usefulness of biochemical (free β-hCG, PAPP-A) and ultrasound (nuchal translucency) parameters in prenatal screening of trisomy 21 in the first trimester of pregnancy. Ginekologia Polska. 2019;90(3):161–166.
23. Santorum M, Wright D, Syngelaki A, Karagioti N, Nicolaides KH. Accuracy of first-trimester combined test in screening for trisomies 21, 18 and 13. Ultrasound Obstet Gynecol. 2017;49:714–720.
24. Driscoll DA, Gross SJ. Screening for fetal aneuploidy and neural tube defects. Genet Med. 2009;11:818-821.
25. Kagan KO, Wright D, Baker A, Sahota D, Nicolaiedes KH. Screening for trisomy 21 by maternal age, fetal nuchal translucency thickness, free beta-human chorionic gonadothropin and pregnancy-associated plasma protein-A. Ultrasound Obstet Gynecol. 2008;31:618-624.
26. Nicolaides KH. Screening for fetal aneuploidies at 11 to 13 weeks. Prenat Diagn. 2011;31:7-15.
27. Wright D, Syngelaki A, Bradbury I, Akolekar R, Nicolaides KH. First-Trimester Screening for Trisomies 21, 18 and 13 by Ultrasound and Biochemical Testing. Fetal Diagn Ther. 2013. doi: 10.1159/000357430.
28. Karahasanovic A, Sørensen S, Nilas L. First trimester pregnancy-associated plasma protein A and human chorionic gonadotropin-beta in early and late pre-eclampsia. Clin Chem Lab Med. 2014;52:521-525.
29. Vandenberghe G, Mensink I, Twisk JW, Blankenstein MA, Heijboer AC, van Vugt JM. First trimester screening for intrauterine growth restriction and early-onset pre-eclampsia. Prenat Diagn. 2011;31:955–61.
30. Giguère Y, Massé J, Thériault S, Bujold E, Lafond J, Rousseau F, Forest J-C. Screening for pre-eclampsia early in pregnancy: performance of a multivariable model combining clinical characteristics and biochemical markers. Inter J Obstet Gynecol. 2015;122:402-410.
31. Ardalić D, Stefanović A, Spasić S, Zeljković A, Vekić J, Spasojević-Kalimanovska V, et al. Lipidni status fiziološke nekomplikovane trudnoće. Arh farm. 2016;66:191-206.
32. Fasshauer M, Seeger J, Waldeyer T, Schrey S, Ebert T, Kratzsch J, et al. Serum levels of the adipokine adipocyte fatty acid-binding protein are increased in preeclampsia. Am J Hypertens. 2008;21:582–6.
33. Ardalić D, Stefanović A, Banjac G, Cabunac P, Miljković M, Mandić-Marković V, et al. Lipid profile and lipid oxidative modification parameters in the first trimester of high- risk pregnancies - possibilities for preeclampsia prediction. Clin Biochem. 2020;81:34–40.
34. Cabunac P, Karadžov- Orlić N, Ardalić D, Banjac G, Ivanišević J, Janać J, et al. Unraveling the role of oxidative stress and lipid status parameters in the onset of preeclampsia. Hypertens Pregnancy. 2021;40:162-170.
35. Khouly NE, Sanad ZF, Saleh SA, Shabana AA, Elhalaby AF, Badr EE. Value of first-trimester serum lipid profile in early prediction of preeclampsia and its severity: A prospective cohort study. Hypertens Pregnancy. 2016;35:73-81.
36. Wang J, Li Z, Lin L. Maternal lipid profiles in women with and without gestational diabetes mellitus. Medicine. 2019;98:16.
37. Zeljković A, Ardalić D, Vekić J, Antonić T, Vladimirov S, Rizzo M, et al. Effects of Gestational Diabetes Mellitus on Cholesterol Metabolism in Women with High-Risk Pregnancies: Possible Implications for Neonatal Outcome. Metabolites. 2022;12:959.
38. Hu M, Gu X, Niu Y, Lu W, Huang C, Tang Q, Wu J. Elevated serum triglyceride levels at first prenatal visit is associated with the development of gestational diabetes mellitus. Diabetes Metab Res Rev. 2022;38:e3491.
39. Woollett LA, Catov JM, Jones HN. Roles of maternal HDL during pregnancy. BBA – Mol Cell Biol L. 2022;1867:159106.
40. Kajani S, Curley S, McGillicuddy FC. Unravelling HDL – Looking beyond the cholesterol surface to the quality within. Int J Mol Sci. 2018;19:1971.
41. Einbinder Y, Biron-Shental T, Agassi-Zaitler M, Tzadikevitch-Geffen K, Vaya J, Khatib S, et al. HDL composition and function in preeclampsia. Arch Gyn Obstet. 2018;298:405-13.
42. Patanapirunhakit P, Karlsson H, Mulder M, Ljunggren S, Graham D, Freeman D. Sphingolipids in HDL – Potential markers for adaptation to pregnancy? BBA – Mol Cell Biol L. 2021;1866:158955.
43. Pasternak Y, Biron-Shental T, Ohana M, Einbinder Y, Arbib N, Benchetrit S, Zitman-Gal T. Gestational diabetes type 2: variation in high-density lipoproteins composition and function. Int J Mol Sci. 2020;21:6281.