Principles and Applications of Interfacial Rheology in (Pre)Formulation Development of Pharmaceutical Preparations

  • Veljko Krstonošić University of Novi Sad – Faculty of Medicine, Department of Pharmacy
  • Nebojša Pavlović University of Novi Sad – Faculty of Medicine, Department of Pharmacy
  • Dejan Ćirin University of Novi Sad – Faculty of Medicine, Department of Pharmacy
Keywords: interfacial rheology, viscoelasticity, emulsion, foam, preformulation

Abstract


Rheology is a science that deals with the movement and deformation of materials, while interfacial rheology is a branch of rheology that focuses on the study of the mechanical properties of fluid interfaces, such as liquid-liquid and liquid-gas interfaces. The behavior of fluid interfaces differs significantly from that of bulk materials, and standard rheological measurements of bulk materials cannot adequately describe their properties. Interfacial rheology is a specialized approach to the study of viscoelasticity and interfacial tension at liquid interfaces and provides valuable insight into intermolecular interactions and surface forces. This knowledge is particularly important for the development of advanced formulations and systems with tailored properties and functionalities. Interfacial rheology is a rapidly growing research field with diverse applications in science and industry. It plays a pivotal role in the development and optimization of pharmaceutical formulations and design of innovative drug delivery carriers with improved stability, enhanced drug release profiles, and targeted delivery capabilities. This review article aims to provide a comprehensive overview of interfacial rheology, its principles, measurement techniques, and applications in various industries. By exploring recent advancements and emerging trends in the field, we aim to highlight the significance of interfacial rheology in optimizing formulations, enhancing product performance, and driving innovations, particularly in pharmaceutical science.

References

Beladjine M, Albert C, Sintès M, Mekhloufi G, Gueutin C, Nicolas V, et al. Pickering emulsions stabilized with biodegradable nanoparticles for the co-encapsulation of two active pharmaceutical ingredients. Int J Pharm. 2023;637:122870.

Arzhavitina A, Steckel H. Foams for pharmaceutical and cosmetic application. Int J Pharm. 2010;394(1-2):1-7.

Farkas D, Kállai-Szabó N, Antal I. Foams as carrier systems for pharmaceuticals and cosmetics. Acta Pharm Hung. 2019;89:5-15.

Hoc D, Haznar-Garbacz D. Foams as unique drug delivery systems. Eur J Pharm Biopharm. 2021;167:73-82.

McClements DJ. Food Emulsions: Principles, Practices, and Technique. 3rd ed. Boca Raton: CRC Press; 2015.

Parsa M, Trybala A, Malik DJ, Starov V. Foam in pharmaceutical and medical applications. Curr Opin Colloid Interface Sci. 2019;44:153-167.

Simonsen G, Kjølaas J, Leinan PR, Schümann H. Literature review on surface-active components in emulsions and foams: Theory and modelling efforts. Geoenergy Sci Eng. 2023;230:21215

Cai Z, Wei Y, Shi A, Zhong J, Rao P, Wang Q, Zhang H. Correlation between interfacial layer properties and physical stability of food emulsions: Current trends, challenges, strategies, and further perspectives. Adv Colloid Interface Sci. 2023;313:102863.

Đaković Lj. Koloidna hemija. 4th ed. Beograd: Zavod za udžbenike i nastavna sredstva; 2006.

Dokić P. Emulzije, pene, aerosoli. Novi Sad: WUS Austria; 2005.

Tadros TF. Applied surfactants. Principles and applications. Weinheim: Wiley – VCH; 2005.

Rosen MJ. Surfactants and interfacial phenomena. Hoboken (NJ): John Wiley & Sons; 2004.

Zhao Y, Brown MB, Jones SA. Pharmaceutical foams: are they the answer to the dilemma of topical nanoparticles? Nanomedicine: Nanotech Biol Med. 2010;6(2):227-36.

Tadros T. Encyclopedia of Colloid and Interface Science. Heidelberg: Springer Berlin; 2013.

Friberg SE. A few common sense observations on emulsion stability. In: Proceedings of 2nd World Congress on Emulsions. Bordeaux, France; 1997; p. 43-64.

Walstra P, Smulders P. Formation of emulsions. In: Proceedings of 2nd World Congress on Emulsion. Bordeaux, France; 1997; p. 67-74.

Santini E, Ravera F, Ferrari M, Stubenrauch C, Makievski A, Krägel J. A surface rheological study of non-ionic surfactants at the water–air interface and the stability of the corresponding thin foam films. Colloids Surf A: Physicochem Eng Asp. 2007;298(1-2):12-21.

Langevin D, Monroy F. Interfacial rheology of polyelectrolytes and polymer monolayers at the air–water interface. Curr Opin Colloid Interface Sci. 2010;15(4):283-93.

El Omari Y, Yousfi M, Duchet-Rumeau J, Maazouz A. Recent Advances in the Interfacial Shear and Dilational Rheology of Polymer Systems: From Fundamentals to Applications. Polymers. 2022;14(14):2844.

Wilson DI. What is rheology? Eye. 2018;32(2):179-83.

Pelipenko J, Kristl J, Rošic R, Baumgartner S, Kocbek P. Interfacial rheology: an overview of measuring techniques and its role in dispersions and electrospinning. Acta Pharm. 2012;62(2):123-40.

Martin JD, Marhefka JN, Migler KB, Hudson SD. Interfacial rheology through microfluidics. Adv Mater. 2011;23:426-432.

Maldonado-Valderrama J, Patino JM. Interfacial rheology of protein–surfactant mixtures. Curr Opin Colloid Interface Sci. 2010;15(4):271-82.

Gul O, Gul LB, Baskıncı T, Parlak ME, Saricaoglu FT. Influence of pH and ionic strength on the bulk and interfacial rheology and technofunctional properties of hazelnut meal protein isolate. Food Res Int. 2023;169:112906.

Madadlou A, Famelart MH, Pezennec S, Rousseau F, Floury J, Dupont D. Interfacial and (emulsion) gel rheology of hydrophobised whey proteins. Int Dairy J. 2020;100:104556.

Cao C, Zhang L, Zhang XX, Du FP. Effect of gum arabic on the surface tension and surface dilational rheology of trisiloxane surfactant. Food Hydrocoll. 2013;30(1):456-62.

Qiao X, Miller R, Schneck E, Sun K. Foaming properties and the dynamics of adsorption and surface rheology of silk fibroin at the air/water interface. Colloids Surf A: Physicochem Eng Asp. 2020;591:124553.

Murray BS. Interfacial rheology of food emulsifiers and proteins. Curr Opin Colloid Interface Sci. 2002;7(5-6):426-31.

Golemanov K, Tcholakova S, Denkov N, Pelan E, Stoyanov SD. Surface shear rheology of saponin adsorption layers. Langmuir. 2012;28(33):12071-84.

Miller R, Ferri JK, Javadi A, Krägel J, Mucic N, Wüstneck R. Rheology of interfacial layers. Colloid Polym Sci. 2010;288:937-50.

El Omari Y, Yousfi M, Duchet-Rumeau J, Maazouz A. Interfacial rheology testing of molten polymer systems: Effect of molecular weight and temperature on the interfacial properties. Polym Test. 2021;101:107280.

Renggli D, Alicke A, Ewoldt RH, Vermant J. Operating windows for oscillatory interfacial shear rheology. J Rheol. 2020;64(1):141-60.

Dan A, Gochev G, Krägel J, Aksenenko EV, Fainerman VB, Miller R. Interfacial rheology of mixed layers of food proteins and surfactants. Curr Opin Colloid Interface Sci. 2013;18(4):302-10.

Carrera C, Felix M, López‐Castejón ML, Pizones VM. Understanding Interfacial Rheology in Food Emulsions. In: Lai WF, editor. Materials Science and Engineering in Food Product Development. Hoboken: John Wiley & Sons; 2023; pp. 57-72.

Ravera F, Loglio G, Kovalchuk VI. Interfacial dilational rheology by oscillating bubble/drop methods. Curr Opin Colloid Interface Sci. 2010;15(4):217-28.

Zamora JM, Marquez R, Forgiarini AM, Langevin D, Salager JL. Interfacial rheology of low interfacial tension systems using a new oscillating spinning drop method. J Colloid Interface Sci. 2018;519:27-37.

Fainerman VB, Kovalchuk VI, Aksenenko EV, Miller R. Dilational viscoelasticity of adsorption layers measured by drop and bubble profile analysis: reason for different results. Langmuir. 2016;32(22):5500-9.

Drelich J, Fang C, White CL. Measurement of interfacial tension in fluid-fluid systems. Encycl Surf Colloid Sci. 2002;3:3158-63.

Alexandrov NA, Marinova KG, Gurkov TD, Danov KD, Kralchevsky PA, Stoyanov SD, et al. Interfacial layers from the protein HFBII hydrophobin: Dynamic surface tension, dilatational elasticity and relaxation times. J Colloid Interface Sci. 2012;376(1):296-306.

Saad SM, Neumann AW. Axisymmetric drop shape analysis (ADSA): an outline. Adv Colloid Interface Sci. 2016;238:62-87.

Bagalkot N, Hamouda AA, Isdahl OM. Dynamic interfacial tension measurement method using axisymmetric drop shape analysis. MethodsX. 2018;5:676-83.

Kale SK, Cope AJ, Goggin DM, Samaniuk JR. A miniaturized radial Langmuir trough for simultaneous dilatational deformation and interfacial microscopy. J Colloid Interface Sci. 2021;582:1085-98.

Ciutara CO, Barman S, Iasella S, Huang B, Zasadzinski JA. Dilatational and shear rheology of soluble and insoluble monolayers with a Langmuir trough. J Colloid Interface Sci. 2023;629:125-35.

Daear W, Mahadeo M, Prenner EJ. Applications of Brewster angle microscopy from biological materials to biological systems. Biochim Biophys Acta Biomembr. 2017;1859(10):1749-66.

Vollhardt D. Brewster angle microscopy: A preferential method for mesoscopic characterization of monolayers at the air/water interface. Curr Opin Colloid Interface Sci. 2014;19(3):183-97.

Martin JD, Marhefka JN, Migler KB, Hudson SD. Interfacial rheology through microfluidics. Adv Mater. 2011;23(3):426-32.

Tregouët C, Salez T, Monteux C, Reyssat M. Microfluidic probing of the complex interfacial rheology of multilayer capsules. Soft Matter. 2019;15(13):2782-90.

Yasuda T, Shimokasa K. Improved system for measuring rheological properties of thickened liquid using an inclined parallel plate and optical sensor. J Texture Stud. 2023;54(4):510-20.

Malara P, Zullo R, Filippone G, Verdolotti L, Lavorgna M, Giorgini A, et al. Rheology of complex fluids with vibrating fiber-optic sensors. Sens Actuator A Phys. 2017;264:219-23.

Karbaschi M, Lotfi M, Krägel J, Javadi A, Bastani D, Miller R. Rheology of interfacial layers. Curr Opin Colloid Interface Sci. 2014;19:514-9.

Kokini J, van Aken G. Discussion session on food emulsions and foams. Food Hydrocoll. 2006;20(4):438-45.

Tóth M, Kaszab T, Meretei A. Texture profile analysis and sensory evaluation of commercially available gluten-free bread samples. Eur Food Res Technol. 2022;248(6):1447-55.

Gillece T, Mcmullen RL, Fares H, Senak L, Ozkan S, Foltis L. Probing the textures of composite skin care formulations using large amplitude oscillatory shear. J Cosmet Sci. 2016;67(2):121-59.

Luengo GS, Fameau AL, Leonforte F, Greaves AJ. Surface science of cosmetic substrates, cleansing actives and formulations. Adv Colloid Interface Sci. 2021;290:102383.

Masschaele K, Vandebril S, Vermant J, Madivala B. Interfacial rheology. Rheology-Volume I. 2010.

Jaensson N, Vermant J. Tensiometry and rheology of complex interfaces. Curr Opin Colloid Interface Sci. 2018;37:136-50.

Gilleo KB. Rheology and surface chemistry. In: Tracton AA, editor. Coatings Technology Handbook, 3rd edition. Boca Raton (FL): CRC Press; 2006; p. 13-7.

Freer EM, Svitova T, Radke CJ. The role of interfacial rheology in reservoir mixed wettability. J Pet Sci Eng. 2003;39(1-2):137-58.

Li H, Van der Meeren P. Sequential adsorption of whey proteins and low methoxy pectin at the oil-water interface: An interfacial rheology study. Food Hydrocoll. 2022;128:107570.

Beltramo PJ, Gupta M, Alicke A, Liascukiene I, Gunes DZ, Baroud CN, Vermant J. Arresting dissolution by interfacial rheology design. Proc Natl Acad Sci. 2017;114(39):10373-8.

Czaikoski A, Gomes A, Kaufmann KC, Liszbinski RB, de Jesus MB, da Cunha RL. Lignin derivatives stabilizing oil-in-water emulsions: Technological aspects, interfacial rheology and cytotoxicity. Ind Crops Prod. 2020;154:112762.

Xie K, De Loubens C, Dubreuil F, Gunes DZ, Jaeger M, Léonetti M. Interfacial rheological properties of self-assembling biopolymer microcapsules. Soft Matter. 2017;13(36):6208-17.

Paul S, Nahire R, Mallik S, Sarkar K. Encapsulated microbubbles and echogenic liposomes for contrast ultrasound imaging and targeted drug delivery. Comput Mech. 2014;53:413-35.

Shahzadi I, Dizdarević A, Efiana NA, Matuszczak B, Bernkop-Schnürch A. Trypsin decorated self-emulsifying drug delivery systems (SEDDS): Key to enhanced mucus permeation. J Colloid Interface Sci. 2018;531:253-60.

Bertsch P, Bergfreund J, Windhab EJ, Fischer P. Physiological fluid interfaces: Functional microenvironments, drug delivery targets, and first line of defense. Acta Biomater. 2021;130:32-53.

Petrova VA, Elokhovskiy VY, Raik SV, Poshina DN, Romanov DP, Skorik YA. Alginate gel reinforcement with chitin nanowhiskers modulates rheological properties and drug release profile. Biomolecules. 2019;9(7):291.

Marapureddy SG, Thareja P. Structure and rheology of hydrogels: applications in drug delivery. In: Chandra P, Pandey LM, editors. Biointerface Engineering: Prospects in Medical Diagnostics and Drug Delivery. Springer Nature eBook; 2020; pp. 75-99.

Dieng SM, Anton N, Bouriat P, Thioune O, Sy PM, Massaddeq N, et al. Pickering nano-emulsions stabilized by solid lipid nanoparticles as a temperature sensitive drug delivery system. Soft Matter. 2019;15(40):8164-74.

Pasquino R, Di Domenico M, Izzo F, Gaudino D, Vanzanella V, Grizzuti N, de Gennaro B. Rheology-sensitive response of zeolite-supported anti-inflammatory drug systems. Colloids Surf B. 2016;146:938-44.

Yoshimoto M, Honda K, Kurosawa S, Tanaka M. Rheology of self-assembled monolayers on solid-liquid interface oscillating at MHz frequency. Chin J Phys. 2017;55(1):16-21.

Knobler CM, Schwartz DK. Langmuir and self-assembled monolayers. Curr Opin Colloid Interface Sci. 1999;4(1):46-51.

Mohammadinejad R, Kumar A, Ranjbar-Mohammadi M, Ashrafizadeh M, Han SS, Khang G, Roveimiab Z. Recent advances in natural gum-based biomaterials for tissue engineering and regenerative medicine: A review. Polymers. 2020;12(1):176.

Gudapati H, Parisi D, Colby RH, Ozbolat IT. Rheological investigation of collagen, fibrinogen, and thrombin solutions for drop-on-demand 3D bioprinting. Soft Matter. 2020;16(46):10506-17.

Skrzypiec M, Prochaska K. Detailed characterization of POSS-poly (ethylene glycol) interaction with model phospholipid membrane at the air/water interface. Colloids Surf B. 2018;171:167-75.

de Andrade Escobar B, Valerio GL, Caseli L. Biological activity of pectic polysaccharides investigated through biomembrane models formed at the air-water interface. Colloids Surf B. 2022;216:112530.

Zhang X, Kirby SM, Chen Y, Anna SL, Walker LM, Hung FR, Russo PS. Formation and elasticity of membranes of the class II hydrophobin Cerato-ulmin at oil-water interfaces. Colloids Surf B. 2018;164:98-106.

Çelebioğlu HY, Kmiecik-Palczewska J, Lee S, Chronakis IS. Interfacial shear rheology of β-lactoglobulin—Bovine submaxillary mucin layers adsorbed at air/water interface. Int J Biol Macromol. 2017;102:857-67.

Bayer IS. Recent advances in mucoadhesive interface materials, mucoadhesion characterization, and technologies. Adv Mater Interfaces. 2022;9(18):2200211.

Goldberg M, Langer R, Jia X. Nanostructured materials for applications in drug delivery and tissue engineering. J Biomater Sci Polym Ed. 2007;18(3):241-68.

Li J, Krause ME, Chen X, Cheng Y, Dai W, Hill JJ, et al. Interfacial stress in the development of biologics: fundamental understanding, current practice, and future perspective. AAPS J. 2019;21:1-7.

Schöne AC, Roch T, Schulz B, Lendlein A. Evaluating polymeric biomaterial–environment interfaces by Langmuir monolayer techniques. J R Soc Interface. 2017;14(130):20161028.

Collada A, Maestro A, Mertens J, Batllori-Badia E, Galindo A, Perez-Gil J, Cruz A. Pulmonary surfactant structure as solved by neutron reflectometry and atomic force microscopy. Biophys J. 2023;122(3):86a.

Jaensson NO, Anderson PD, Vermant J. Computational interfacial rheology. J Non-Newton Fluid Mech. 2021;290:104507.

Kondej D, Sosnowski TR. Interfacial rheology for the assessment of potential health effects of inhaled carbon nanomaterials at variable breathing conditions. Sci Rep. 2020;10(1):14044.

Li MC, Wu Q, Moon RJ, Hubbe MA, Bortner MJ. Rheological aspects of cellulose nanomaterials: Governing factors and emerging applications. Adv Mater. 2021;33(21):2006052.

Trujillo-Cayado LA, Santos J, Ramírez P, Alfaro MC, Muñoz J. Strategy for the development and characterization of environmental friendly emulsions by microfluidization technique. J Clean Prod. 2018;178:723-30.

Tatini D, Raudino M, Ambrosi M, Carretti E, Davidovich I, Talmon Y, et al. Physicochemical characterization of green sodium oleate-based formulations. Part 1. Structure and rheology. J Colloid Interface Sci. 2021;590:238-48.

Shopova D, Yaneva A, Bakova D, Mihaylova A, Kasnakova P, Hristozova M, et al. (Bio)printing in Personalized Medicine—Opportunities and Potential Benefits. Bioeng. 2023;10(3):287.

Garbin V, Crocker JC, Stebe KJ. Nanoparticles at fluid interfaces: Exploiting capping ligands to control adsorption, stability and dynamics. J Colloid Interface Sci. 2012;387(1):1-11.

Published
2023/10/27
Section
Review articles