The The Landscape of Nanomedicines: An Expert Perspective
Abstract
Polje nanotehnologije se nalazi na čelu naučne revolucije, gde se termin „nano“ izdiže iznad pukog označavanja veličine, otvarajući vrata novim mogućnostima. U kontekstu razvoja lekova, izbor odgovarajućeg sistema za isporuku / nosača (koji odgovara određenoj aktivnoj supstanci) predstavlja ključnu odluku. U tom kontekstu, nanosistemi već određeno vreme predstavljaju inovativna rešenja. Iako farmaceutski nanosistemi nose ogroman potencijal, suočavaju se sa određenim izazovima u pogledu translacije sa prekliničkog na klinički nivo, što se ogleda u nedostatku odgovarajućih protokola za ispitivanje kvaliteta i bezbednosti i, shodno tome, nedefinisanom regulatornom okruženju. Od revolucionarnog odobrenja liposomalnog doksorubicina od strane Američke agencije za hranu i lekove 1995. godine, pa sve do danas, oko 80 nano formulacija (nanolekova) odobreno je za kliničku primenu. Odnedavno je intenzivnija pažnja usmerena ka nanoformulacijama baziranim na lipidima, što je delom posledica razvoja mRNK vakcina tokom pandemije COVID-19. Međutim, relativno skroman nastup nanolekova na tržištu (u poređenju sa obimnim istraživačkim naporima i finansijskim ulaganjima u ovu oblast) otvara važna pitanja. Ovaj rad pruža pregled izazova u definisanju nanolekova, njihovih svojstava, kompleksnosti regulatornih okvira i imperativa za stvaranje standardizovanih protokola karakterizacije.
References
Weltring KM, Gouze N, Martin N, Pereira N, Baanante I, Gramatica F. Strategic Research and Innovation Agenda for Nanomedicine 2016–2030 [Internet]. 2016 [cited 2023 Sep 30]. Available from: https://etp-nanomedicine.eu/about-nanomedicine/strategic-research-and-innovation-agenda/.
Mitragotri S, Lammers T, Bae YH, Schwendeman S, De Smedt SC, Leroux JC, et al. Drug delivery research for the future: expanding the nano horizons and beyond. J Control Release. 2017;246:183-4.
Dahnier F. To exploit the tumor microenvironment: Since the EPR effect fails in the clinic, what is the future of nanomedicine? J Control Release. 2016;244:108-21.
Wilhelm S, Tavares AJ, Dai Q, Ohta S, Audet J, Dvorak HF, Chan WC. Analysis of nanoparticle delivery to tumours. Nat Rev Mat. 2016;1:1-12.
Onoue S, Yamada S, Chan HK. Nanodrugs: pharmacokinetics and safety. Int J Nanomed. 2104;9:1025.
Bamrungsap S, Zhao Z, Chen T, Wang L, Li C, Fu T, Tan W. Nanotechnology in therapeutics: a focus on nanoparticles as a drug delivery system. Nanomedicine. 2012;7:1253-71.
EU Community Research and Development Information Service – CORDIS [Internet] [cited 2023 Sep 30]. Available from: https://cordis.europa.eu/.
Nikravesh N, Borchard G, Hofmann H, Philipp E, Flühmann B, Wick P. Factors influencing safety and efficacy of intravenous iron-carbohydrate nanomedicines: From production to clinical practice. Nanomedicine. 2020;26:102178.
Barenholz Y. Doxil®--the first FDA-approved nano-drug: lessons learned. J Control Release. 2012;160(2):117-34.
De Jong WH, Geertsma RE, Borchard G. Regulatory safety evaluation of nanomedical products: key issues to refine. Drug Deliv Transl Res. 2022;12(9):2042-47.
Halamoda-Kenzaoui B, Vandebriel RJ, Howarth A, Siccardi M, David CAW, Liptrott NJ, et al. Methodological needs in the quality and safety characterisation of nanotechnology-based health products: Priorities for method development and standardisation. J Control Release. 2021;336:192-206.
ClinicalTrials.gov Database [Internet] [cited 2023 Sep 30]. Available from: https://clinicaltrials.gov/.
Ryanodex – information for health professionals [Internet] [cited 2023 Sep 30]. Available from: https://www.ryanodex.com/why-ryanodex/.
Pita R, Ehmann F, Papaluca M. Nanomedicines in the EU - Regulatory Overview. AAPS J. 2016;18(6):1576–82.
Fanun M. Application of Colloidal Properties in Drug Delivery. In: Fanun M, editor. Colloids in Drug Delivery. Boca Raton (Florida): CRC Press, Taylor & Francis Group; 2016; p. 55-69.
Scientific Committee on Emerging and Newly Identified Health Risks. Scientific basis for the definition of “nanomaterial” [Internet]. 2010 [cited 2023 Sep 30]. Available from: https://ec.europa.eu/health/scientific_committees/emerging/docs/scenihr_o_032.pdf.
Dri DA, Rinaldi F, Carafa M, Marianecci C. Nanomedicines and nanocarriers in clinical trials: surfing through regulatory requirements and physico-chemical critical quality attributes. Drug Deliv Transl Res. 2023;13(3):757-69.
European Union Observatory for Nanomaterials [Internet] [cited 2023 Sep 30]. Available from: https://euon.echa.europa.eu/definition-of-nanomaterial.
European Nanomedicine Technology Platform [Internet] [cited 2023 Sep 30]. Available from: https://etp-nanomedicine.eu/about-nanomedicine/what-is-nanomedicine/.
European Medical Research Councils Forward Look Report [Internet] [cited 2023 Sep 30]. Available from: http://archives.esf.org/fileadmin/Public_documents/Publications/Nanomedicine.pdf.
Clogston JD, Hackley VA, Prina-Mello A, Puri S, Sonzini S, Soo PL. Sizing up the next generation of nanomedicines. Pharm Res. 2020;37:1-10.
Hemmrich E, McNeil S. Active ingredient vs excipient debate for nanomedicines. Nat Nanotechnol. 2023;18:692–95.
Halamoda-Kenzaoui B, Holzwarth U, Roebben G, Bogni A, Bremer-Hoffmann S. Mapping of the available standards against the regulatory needs for nanomedicines. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2019;11(1):e1531.
European Medicines Agency/Committee for Medicinal Products for Human Use. Reflection paper on the data requirements for intravenous iron-based nano-colloidal products developed with reference to an innovator medicinal product. EMA/CHMP/SWP/620008/2012. 2015.
European Medicines Agency/Committee for Medicinal Products for Human Use. Reflection paper on surface coatings: general issues for consideration regarding parenteral administration of coated nanomedicine products. EMA/325027/2013. 2013.
European Medicines Agency/Committee for Medicinal Products for Human Use. Reflection paper on the data requirements for intravenous liposomal products developed with reference to an innovator liposomal product. EMA/CHMP/806058/2009/Rev. 02. 2013.
European Medicines Agency/Committee for Medicinal Products for Human Use. Joint MHLW/EMA reflection paper on the development of 5 block copolymer micelle medicinal products. EMA/CHMP/13099/2013. 2013.
European Medicines Agency/Committee for Medicinal Products for human Use. Reflection paper on non-clinical studies for generic nanoparticle iron medicinal product applications. EMA/CHMP/SWP/100094/2011. 2011.
Halamoda-Kenzaoui B, Bremer-Hoffmann S. Main trends of immune effects triggered by nanomedicines in preclinical studies. Int J Nanomedicine. 2018;13:5419-5431.
Simon CG Jr, Borgos SE, Calzolai L, Nelson BC, Parot J, Petersen EJ, et al. Orthogonal and complementary measurements of properties of drug products containing nanomaterials. J Control Release. 2023;354:120-127.
Borgos SEF. Characterization methods: Physical and chemical characterization techniques. In: Cornier J, Owen A, Kwade A, Van der Voorde M, editors. Pharmaceutical Nanotechnology: Innovation and Production. Weinheim (Germany): Wiley‐VCH Verlag GmbH & Co. KGaA: 2017; p 135-56.
FDA Guidance for Industry: Drug Products, Including Biological Products, that Contain Nanomaterials [Internet] [cited 2023 Sep 30]. Available from: https://www.fda.gov/files/drugs/published/Drug-Products--Including-Biological-Products--that-Contain-Nanomaterials---Guidance-for-Industry.pdf.
Bremer S, Halamoda Kenzaoui B, Borgos S. Identification of regulatory needs for nanomedicines: 1st EU-NCL survey with the "Nanomedicine" working group of the international pharmaceutical regulators. Luxembourg: Publications Office of the European Union; 2016.
Gioria S, Caputo F, Urbán P, Maguire CM, Bremer-Hoffmann S, Prina-Mello A, et al. Are existing standard methods suitable for the evaluation of nanomedicines: some case studies. Nanomedicine (Lond). 2018;13(5):539-54.
Ong KJ, MacCormack TJ, Clark RJ, Ede JD, Ortega VA, Felix LC, et al. Widespread nanoparticle-assay interference: implications for nanotoxicity testing. PLoS One. 2014;11;9(3):e90650.
Li Y, Fujita M, Boraschi D. Endotoxin Contamination in Nanomaterials Leads to the Misinterpretation of Immunosafety Results. Front Immunol. 2017;8:472.
Hannon G, Prina-Mello A. Endotoxin contamination of engineered nanomaterials: Overcoming the hurdles associated with endotoxin testing. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2021;13(6):e1738.
EDQM. Recombinant factor C: New Ph. Eur. chapter available as of 1 July 2020 [Internet]. 2020 [cited 2023 Sep 30]. Available from: https://www.edqm.eu/en/-/recombinant-factor-c-new-ph.-eur.-chapter-available-as-of-1-july-2020.
USP [Internet]. 2020 [cited 2023 Sep 30]. Available from: https://www.usp.org/news/rfc-horseshoe-crabs-statement.
EU-NCL Assay Cascade Characterization Program [Internet] [cited 2023 Sep 30]. Available from: https://www.cancer.gov/nano/research/ncl/assay-cascade.
H2020 REFINE Project [Internet] [cited 2023 Sep 30]. Available from: http://refine-nanomed.eu/.
The International Regulators Working Programme. Nanomedicines [Internet] [cited 2023 Sep 30]. Available from: https://www.iprp.global/working-group/nanomedicines.
EDQM Newsroom. Ph. Eur. Commission establishes a new working party on mRNA vaccines [Internet] [cited 2023 Sep 30]. Available from: https://www.edqm.eu/en/-/ph.-eur.-commission-establishes-a-new-working-party-on-mrna-vaccines.