Role of lipoprotein lipase variants in metabolic disorders and cardiovascular diseases

  • Sana Rafaqat Lahore College for Women University, Department of Biotechnology (Human Genetics
  • Saira Rafaqat Lahore College for Women University, Department of Zoology (Molecular Physiology)
  • Saima Sharif Lahore College for Women University, Department of Zoology (Molecular Physiology)
  • Aleksandra Klisić University of Montenegro – Faculty of Medicine; Center for Laboratory Diagnostics, Primary Health Care Center
Keywords: lipoprotein lipase, metabolic syndrome, cardiovascular diseases, pathophysiology, mutation

Abstract


Lipoprotein lipase (LPL) is a glycoprotein that is produced and secreted into the interstitial space in various tissues, including the cardiac muscle, adipose tissue, macrophages, and skeletal muscle. LPL activity could be affected by genetic alterations which result in changes in lipid metabolism. This review article only focuses on reporting the recent studies which mainly explain the role of the LPL gene variants in metabolic syndrome and cardiovascular diseases. There are over 100 LPL gene variants, but this review article reported rs1801177, rs118204069, rs118204057, rs118204060, rs118204068, rs268, and rs328 as the most common in metabolic syndrome patients. In cardiovascular diseases, LPL variants rs1801177, rs268 and rs328 were the most prevalent. Therefore, it is suggested that further studies should be conducted to identify the LPL gene variants in other cardiovascular diseases, including cardiac arrhythmia. This review article concludes that LPL deficiency and dysfunction are associated with many diseases, such as obesity, insulin resistance, diabetes, chylomicronemia, atherosclerosis, myocardial infarction, coronary artery disease, and stroke.

References

Mann GV. A short history of lipoproteins. In: Homburger F, Bernfeld P, editors. The Lipoproteins. Methods and Clinical Significance. Basel, Switzerland: Karger; 1958; pp. 7-13.

Gaudet D, Méthot J, Kastelein J. Gene therapy for lipoprotein lipase deficiency. Curr Opin Lipidol. 2012;23(4):310-20.

Wion KL, Kirchgessner TG, Lusis AJ, Schotz MC, Lawn RM. Human lipoprotein lipase complementary DNA sequence. Science. 1987;235(4796):1638-41.

Persson B, Bengtsson-Olivecrona G, Enerbäck S, Olivecrona T, Jörnvall H. Structural features of lipoprotein lipase. Lipase family relationships, binding interactions, non-equivalence of lipase cofactors, vitellogenin similarities and functional subdivision of lipoprotein lipase. Eur J Biochem. 1989;179(1):39-45.

Rader DJ, Jaye M. Endothelial lipase: a new member of the triglyceride lipase gene family. Curr Opin Lipidol. 2000;11:141–147.

Emmerich J, Beg OU, Peterson J, Previato L, Brunzell JD, Brewer HB Jr, Santamarina-Fojo S. Human lipoprotein lipase. Analysis of the catalytic triad by site-directed mutagenesis of Ser132, Asp-156, and His-241. J Biol Chem. 1992;267:4161–4165.

Eckel RH. Lipoprotein lipase. A multifunctional enzyme relevant to common metabolic diseases. N Engl J Med. 1989;320(16):1060-8.

Wang H, Eckel RH. Lipoprotein lipase: from gene to obesity. Am J Physiol Endocrinol Metab. 2009;297(2):E271-88.

Fernández-Borja M, Bellido D, Vilella E, Olivecrona G, Vilaró S. Lipoprotein lipase-mediated uptake of lipoprotein in human fibroblasts: evidence for an LDL receptor-independent internalization pathway. J Lipid Res. 1996;37(3):464-81.

Daoud MS, Ataya FS, Fouad D, Alhazzani A, Shehata AI, Al-Jafari AA. Associations of three lipoprotein lipase gene polymorphisms, lipid profiles and coronary artery disease. Biomed Rep. 2013;1(4):573-582.

Gerdes C, Gerdes LU, Hansen PS, Faergeman O. Polymorphisms in the lipoprotein lipase gene and their associations with plasma lipid concentrations in 40-year-old Danish men. Circulation. 1995;92(7):1765-9.

Heizmann C, Kirchgessner T, Kwiterovich PO, Ladias JA, Derby C, Antonarakis SE, Lusis AJ. DNA polymorphism haplotypes of the human lipoprotein lipase gene: possible association with high density lipoprotein levels. Hum Genet. 1991;86(6):578-84.

Augustus A, Yagyu H, Haemmerle G, Bensadoun A, Vikramadithyan RK, Park SY, et al. Cardiac-specific knock-out of lipoprotein lipase alters plasma lipoprotein triglyceride metabolism and cardiac gene expression. J Biol Chem. 2004;279(24):25050-7.

Noh HL, Okajima K, Molkentin JD, Homma S, Goldberg IJ. Acute lipoprotein lipase deletion in adult mice leads to dyslipidemia and cardiac dysfunction. Am J Physiol Endocrinol Metab. 2006;291(4):E755-60.

Goldberg IJ. Lipoprotein lipase and lipolysis: central roles in lipoprotein metabolism and atherogenesis. J Lipid Res. 1996; 37(4):693-707.

Preiss-Landl K, Zimmermann R, Hämmerle G, Zechner R. Lipoprotein lipase: the regulation of tissue specific expression and its role in lipid and energy metabolism. Curr Opin Lipidol. 2002;13(5):471-81.

Yang W, Huang J, Yao C, Su S, Liu D, Ge D, et al. Linkage and linkage disequilibrium analysis of the lipoprotein lipase gene with lipid profiles in Chinese hypertensive families. Clin Sci (Lond). 2005;108:137–142.

Yang W, Huang J, Ge D, Yao C, Duan X, Shen Y, et al. Lipoprotein lipase gene is in linkage with blood pressure phenotypes in Chinese pedigrees. Hum Genet. 2004;115:8–12.

Henderson HE, Kastelein JJ, Zwinderman AH, Gagné E, Jukema JW, Reymer PW, et al. Lipoprotein lipase activity is decreased in a large cohort of patients with coronary artery disease and is associated with changes in lipids and lipoproteins. J Lipid Res. 1999;40:735–743.

Oka K, Tkalcevic GT, Nakano T, Tucker H, Ishimura-Oka K, Brown WV. Structure and polymorphic map of human lipoprotein lipase gene. Biochim Biophys Acta. 1990;1049(1):21–6.

Deeb SS, Peng RL. Structure of the human lipoprotein lipase gene. Biochemistry. 1989;28(10):4131–5.

Havel RJ, Gordon RS. Idiopathic hyperlipemia: metabolic studies in an affected family. J Clin Invest. 1960;39(12):1777-90.

Gaudet D, Méthot J, Kastelein J. Gene therapy for lipoprotein lipase deficiency. Curr Opin Lipidol. 2012;23(4):310-20.

Duman BS, Türkoğlu Ç, Akpınar B, Güden M, Vertii A, Dak E, et al. Lipoprotein lipase gene polymorphism and lipid profile in coronary artery disease. Arch Pathol Lab Med. 2004;128(8):869-74.

Alberti K, Zimmet P, Shaw J. Metabolic syndrome—A new world-wide definition. A consensus statement from the International Diabetes Federation. Diabetic Med. 2006;23:469–80.

Kaur J. A comprehensive review on metabolic syndrome. Cardiol Res Pract. 2014;2014:943162.

Mead JR, Irvine SA, Ramji DP. Lipoprotein lipase: structure, function, regulation, and role in disease. J Mol Med. 2002;80:753-69.

Burnett JR, Hooper AJ, Hegele RA. Familial Lipoprotein Lipase Deficiency [Internet]. 1999 Oct 12 [updated 2017 Jun 22; cited]. In: Adam MP, Feldman J, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, et al, editors. GeneReviews. Seattle (WA): University of Washington, Seattle; 1993–2023. Available from: https://pubmed.ncbi.nlm.nih.gov/20301485/, 2023 December 01.

Petrescu-Dănilă E, Voicu PM, Ionescu CR. Aspecte mutagenice la nivelul genei lipoprotein lipazei [Mutagenic aspects of the lipoprotein lipase gene]. Rev Med Chir Soc Med Nat Iasi. 2006;110(1):173-7. (in Romanian).

Gotoda T, Shirai K, Ohta T, Kobayashi J, Yokoyama S, Oikawa S, et al. Diagnosis and management of type I and type V hyperlipoproteinemia. J Atheroscler Thromb. 2012;19:1–12.

Martín-Campos JM, Julve J, Roig R, Martínez S, Errico TL, Martínez-Couselo S, et al. Molecular analysis of chylomicronemia in a clinical laboratory setting: diagnosis of 13 cases of lipoprotein lipase deficiency. Clin Chim Acta. 2014;429:61–8.

Parson W, Kraft HG, Niederstätter H, Lingenhel AW, Köchl S, Fresser F, Utermann G. A common nonsense mutation in the repetitive Kringle IV-2 domain of human apolipoprotein(a) results in a truncated protein and low plasma Lp(a). Hum Mutat. 2004;24(6):474-80.

Pingitore P, Lepore SM, Pirazzi C, Mancina RM, Motta BM, Valenti L, et al. Identification and characterization of two novel mutations in the LPL gene causing type I hyperlipoproteinemia. J Clin Lipidol. 2016;10(4):816-23.

Eller P, Schgoer W, Mueller T, Tancevski I, Wehinger A, Ulmer H, et al. Hepatic lipase polymorphism and increased risk of peripheral arterial disease. J Intern Med. 2005;258(4):344-8.

Schwartz MW, Seeley RJ, Zeltser LM, Drewnowski A, Ravussin E, Redman LM, Leibel RL. Obesity pathogenesis: an endocrine society scientific statement. Endocr Rev. 2017;38(4):267-96.

Nuermaimaiti N, Liu J, Liang X, Jiao Y, Zhang D, Liu L, et al. Effect of lncRNA HOXA11-AS1 on adipocyte differentiation in human adipose-derived stem cells. Biochem Biophys Res Commun. 2018;495(2):1878-84.

Kersten S. Physiological regulation of lipoprotein lipase. Biochim Biophys Acta. 2014;1841(7):919-33.

Wang H, Eckel RH. Lipoprotein lipase: from gene to obesity. Am J Physiol Endocrinol Metab. 2009;297(2):E271-88.

Guo X, Chen R, Mo B, Liu Q. [Effect of lipoprotein lipase gene polymorphism on plasma lipid levels,BMI and subcutaneous fat distribution in simple obesity children]. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 2000;17(2):105-7. (in Chinese).

Huang AQ, Hu YH, Zhan SY, Xu B, Pang ZC, Cao WH, et al. Lipoprotein lipase gene S447X polymorphism modulates the relation between central obesity and serum lipids, a twin study. Int J Obes (Lond). 2006;30(12):1693-701.

Schwartz RS, Brunzell JD. Increase of adipose tissue lipoprotein lipase activity with weight loss. J Clin Invest. 1981;67(5):1425-30.

Taskinen MR. Lipoprotein lipase in diabetes. Diabetes Metab Rev. 1987;3:551-70.

Klannemark M, Suurinkeroinen L, Orho-Melander M, Groop L, Taskinen MR. Interaction between the Asn291Ser variant of the LPL gene and insulin resistance on dyslipidaemia in high risk individuals for Type 2 diabetes mellitus. Diabet Med. 2000;17:599-605.

Kalmar T, Seres I, Balogh Z, Kaplar M, Winkler G, Paragh G. Correlation between the activities of lipoprotein lipase and paraoxonase in type 2 diabetes mellitus. Diabetes Metab. 2005;31:574-80.

Marcais C, Bernard S, Merlin M, Ulhmann M, Mestre B, Rochet-Mingret L, et al. Severe hypertriglyceridaemia in Type II diabetes: involvement of apoC-III Sst-I polymorphism, LPL mutations and apo E3 deficiency. Diabetologia. 2000;43:1346-52.

Ma YQ, Thomas GN, Ng MC, Critchley JA, Chan JC, Tomlinson B. The lipoprotein lipase gene HindIII polymorphism is associated with lipid levels in early-onset type 2 diabetic patients. Metabolism. 2003;52:338-43.

Socquard E, Durlach A, Clavel C, Nazeyrollas P, Durlach V. Association of HindIII and PvuII genetic polymorphisms of lipoprotein lipase with lipid metabolism and macrovascular events in type 2 diabetic patients. Diabetes Metab Rev. 2006;32:262-9.

Ukkola O, Savolainen MJ, Salmela PI, von Dickhoff K, Kesaniemi YA. DNA polymorphisms at the lipoprotein lipase gene are associated with macroangiopathy in type 2 (non-insulin-dependent) diabetes mellitus. Atherosclerosis. 1995;115:99-05.

Mattu RK, Trevelyan J, Needham EW, Khan M, Adiseshiah MA, Richter D, et al. Lipoprotein lipase gene variants relate to presence and degree of microalbuminuria in Type II diabetes. Diabetologia. 2002;45:905-13.

Solini A, Passaro A, Fioretto P, Nannipieri M, Ferrannini E. Lipoprotein lipase gene variants and progression of nephropathy in hypercholesterolaemic patients with type 2 diabetes. J Intern Med. 2004;256:30-6.

Ng MC, Baum L, So WY, Lam VK, Wang Y, Poon E, et al. Association of lipoprotein lipase S447X, apolipoprotein E exon 4, and apoC3 -455T>C polymorphisms on the susceptibility to diabetic nephropathy. Clin Genet. 2006;70:20-8.

Javorsky M, Kozarova M, Salagovic J, Tkac I. Relationship among urinary albumin excretion rate, lipoprotein lipase PvuII polymorphism and plasma fibrinogen in type 2 diabetic patients. Physiol Res. 2006;55:55-62.

Radha V, Vimaleswaran KS, Ayyappa KA, Mohan V. Association of lipoprotein lipase gene polymorphisms with obesity and type 2 diabetes in an Asian Indian population. Int J Obes (Lond). 2007;31:913-8.

Cho YS, Go MJ, Han HR, Cha SH, Kim HT, Min H, et al. Association of lipoprotein lipase (LPL) single nucleotide polymorphisms with type 2 diabetes mellitus. Exp Mol Med. 2008;40(5):523-32.

Taskinen MR. Lipoprotein lipase in diabetes. Diabetes Metab Rev. 1987;3(2):551-70.

Reccia I, Kumar J, Akladios C, Virdis F, Pai M, Habib N, Spalding D. Non-alcoholic fatty liver disease: a sign of systemic disease. Metabolism. 2017;72:94-108.

Heo JH, Jo SH. Triglyceride-Rich Lipoproteins and Remnant Cholesterol in Cardiovascular Disease. J Korean Med Sci. 2023;38(38):e295.

Kimura T, Tsunekawa K, Nagasawa T, Aoki T, Miyashita K, Yoshida A, et al. Circulating levels of lipoprotein lipase and glycosylphosphatidylinositol-anchored high-density lipoprotein binding protein 1: new markers for cardiovascular diseases among noncommunicable diseases: a brief narrative review. J Lab Precis Med. 2023;8:18.

Groenemeijer BE, Hallman MD, Reymer PW, Gagné E, Kuivenhoven JA, Bruin T, et al. Genetic variant showing a positive interaction with beta-blocking agents with a beneficial influence on lipoprotein lipase activity, HDL cholesterol, and triglyceride levels in coronary artery disease patients. The Ser447-stop substitution in the lipoprotein lipase gene. REGRESS Study Group. Circulation. 1997;95(12):2628-35.

Daoud MS, Ataya FS, Fouad D, Alhazzani A, Shehata AI, Al-Jafari AA. Associations of three lipoprotein lipase gene polymorphisms, lipid profiles and coronary artery disease. Biomed Rep. 2013;1(4):573-582.

Goodarzi MO, Guo X, Taylor KD, Quinones MJ, Saad MF, Yang H, et al. Lipoprotein lipase is a gene for insulin resistance in Mexican Americans. Diabetes. 2004;53(1):214-20.

Barg E. Polimorfizmy genu lipazy lipoproteinowej i ich udział w procesach metabolicznych [Polymorphisms of lipoprotein lipase gene and their participation in metabolic processes]. Pediatr Endocrinol Diabetes Metab. 2011;17(2):107-12. (in Polish).

Rohini A, Agrawal N, Kumar H, Kumar V. Emerging role of branched chain amino acids in metabolic disorders: a mechanistic review. PharmaNutrition. 2018;6:47-54.

Tabatabaei-Malazy O, Larijani B, Abdollahi M. Targeting metabolic disorders by natural products. J Diabetes Metab Disord. 2015;14:57.

Dehghan M, Pourahmad-Jaktaji R, Farzaneh Z. Calcitonin receptor AluI (rs1801197) and Taq1 calcitonin genes polymorphism in 45-and over 45-year-old women and their association with bone density. Acta Inform Med. 2016;24:239-243.

Kina-Tanada M, Sakanashi M, Tanimoto A, Kaname T, Matsuzaki T, Noguchi K, et al. Long-term dietary nitrite and nitrate deficiency causes the metabolic syndrome, endothelial dysfunction and cardiovascular death in mice. Diabetologia. 2017;60:1138-1151.

Muller CJF, Malherbe CJ, Chellan N, Yagasaki K, Miura Y, Joubert E. Potential of rooibos, its major C-glucosyl flavonoids, and Z-2-(β-D-glucopyranosyloxy)-3-phenylpropenoic acid in prevention of metabolic syndrome. Crit Rev Food Sci Nutr. 2018;58(2):227-246.

Leslie BR. Metabolic syndrome: historical perspectives. Am J Med Sci. 2005;330:264-268.

Vishram JK, Hansen TW, Torp-Pedersen C, Madsbad S, Jørgensen T, Fenger M, et al. Relationship Between Two Common Lipoprotein Lipase Variants and the Metabolic Syndrome and Its Individual Components. Metab Syndr Relat Disord. 2016;14(9):442-448.

Brunzell JD, Deeb SS. Familial lipoprotein lipase deficiency, apo CII deficiency and hepatic lipase deficiency. In: Scriver CR, Beaudet AI, Sly WS, Valle D, editors. The Metabolic and Molecular Basis of Inherited Disease. 8th ed. New York, NY: McGraw-Hill; 2000; pp. 2789-2816.

Nordestgaard BG, Stender S, Kjeldsen K. Reduced atherogenesis in cholesterol-fed diabetic rabbits: giant lipoproteins do not enter the arterial wall. Arteriosclerosis. 1988;8(4):421-428.

Nordestgaard BG. Triglyceride-rich lipoproteins and atherosclerotic cardiovascular disease: new insights from epidemiology, genetics, and biology. Circ Res. 2016;118(4):547-563.

Nordestgaard BG, Abildgaard S, Wittrup HH, Steffensen R, Jensen G, Tybjaerg-Hansen A. Heterozygous lipoprotein lipase deficiency: frequency in the general population, effect on plasma lipid levels, and risk of ischemic heart disease. Circulation. 1997;96(6):1737-1744.

Khera AV, Won HH, Peloso GM, O'Dushlaine C, Liu D, Stitziel NO, et al; Myocardial Infarction Genetics Consortium, DiscovEHR Study Group, CARDIoGRAM Exome Consortium, and Global Lipids Genetics Consortium. Association of Rare and Common Variation in the Lipoprotein Lipase Gene with Coronary Artery Disease. JAMA. 2017;317(9):937-946.

Cagatay P, Susleyici-Duman B, Ciftci C. Lipoprotein lipase gene PvuII polymorphism serum lipids and risk for coronary artery disease: metaanalysis. Dis Markers. 2007;23(3):161–6.

Sayad A, Noruzinia M, Zamani M, Harirchian MH, Kazemnejad A. Lipoprotein Lipase HindIII Intronic Polymorphism in a Subset of Iranian Patients with Late-Onset Alzheimer's Disease. Cell J. 2012;14(1):67-72.

Goodarzi MO, Guo X, Taylor KD, Quiñones MJ, Saad MF, Yang H, et al. Lipoprotein lipase is a gene for insulin resistance in Mexican Americans. Diabetes. 2004;53(1):214-20.

Mead JR, Cryer A, Ramji DP. Lipoprotein lipase, a key role in atherosclerosis? FEBS Lett. 1999;462(1–2):1–6.

McFarlane SI, Banerji M, Sowers JR. Insulin resistance and cardiovascular disease. J Clin Endocrinol Metab. 2001;86(2):713–8.

Stancáková A, Baldaufová L, Javorský M, Kozárová M, Salagovic J, Tkác I. Effect of gene polymorphisms on lipoprotein levels in patients with dyslipidemia of metabolic syndrome. Physiol Res. 2006;55(5):483-490.

Gehrisch S. Common mutations of the lipoprotein lipase gene and their clinical significance. Curr Atheroscler Rep. 1999;1(1):70-8.

Wen Y, Chen YQ, Konrad RJ. The Regulation of Triacylglycerol Metabolism and Lipoprotein Lipase Activity. Adv Biol (Weinh). 2022;6(10):e2200093.

Muñoz-Barrios S, Guzmán-Guzmán IP, Muñoz-Valle JF, Salgado-Bernabé AB, Salgado-Goytia L, Parra-Rojas I. Association of the HindIII and S447X polymorphisms in LPL gene with hypertension and type 2 diabetes in Mexican families. Dis Markers. 2012;33(6):313-20.

Tanguturi PR, Pullareddy B, Rama Krishna BS, Murthy DK. Lipoprotein lipase gene HindIII polymorphism and risk of myocardial infarction in South Indian population. Indian Heart J. 2013;65(6):653-7.

Imeni M, Hasanzad M, Naji T, Poopak B, Babanejad M, Sanati HR, et al. Analysis of the association Hind III Polymorphism of Lipoprotein Lipase gene on the risk of coronary artery disease. Res Mol Med. 2013;1(3):19–24.

He T, Wang J, Deng WS, Sun P. Association between Lipoprotein Lipase Polymorphism and the Risk of Stroke: A Meta-analysis. J Stroke Cerebrovasc Dis. 2017;26(11):2570–2578.

Palacio Rojas M, Prieto C, Bermúdez V, Garicano C, Núñez Nava T, Martínez MS, et al. Dyslipidemia: Genetics, lipoprotein lipase and HindIII polymorphism. F1000Res. 2017;6:2073.

Ma YQ, Thomas GN, Ng MC, Critchley JA, Chan JC, Tomlinson B. The lipoprotein lipase gene HindIII polymorphism is associated with lipid levels in early-onset type 2 diabetic patients. Metabolism. 2003;52:338-43.

Xie L, Li YM. Lipoprotein Lipase (LPL) Polymorphism and the Risk of Coronary Artery Disease: A Meta-Analysis. Int J Environ Res Public Health. 2017;14(1):84.

Spence JD, Ban MR, Hegele RA. Lipoprotein lipase (LPL) gene variation and progression of carotid artery plaque. Stroke. 2003;34(5):1176-80.

Gagné SE, Larson MG, Pimstone SN, Schaefer EJ, Kastelein JJ, Wilson PW, Ordovas JM, Hayden MR. A common truncation variant of lipoprotein lipase (Ser447X) confers protection against coronary heart disease: the Framingham Offspring Study. Clin Genet. 1999;55(6):450-4.

Guan YM, Gui YH, Luo FH, Shen SX, Yang Y. [Lipoprotein lipase gene mutations and the risk of cardiovascular diseases in children with obesity]. Zhongguo Dang Dai Er Ke Za Zhi. 2010;12(3):161-4. (in Chinese).

Published
2024/02/22
Section
Review articles