Hypoxia-induced cardioprotection: A review

  • Khaja Shameem Mohammed Abdul Huntington Medical Research Institutes, Cardiovascular Signaling Division
  • Alexa Sen Huntington Medical Research Institutes, Cardiovascular Signaling Division
  • Rajeev Vikram University of Alberta, Department of Medical Genetics
  • Chenchen Xia University of California Berkeley, Department of Bioengineering
  • Ahmad A. Alshehri Najran University, Faculty of Applied Medical Sciences, Department of Clinical Laboratory Sciences
Keywords: hypoxia, cardioprotection, hypoxic preconditioning, HIF, ischemic heart disease and heart failure

Abstract


Hypoxia, a state of reduced oxygen availability, exerts complex and often paradoxical effects on the heart. While chronic hypoxia is detrimental and leads to adverse cardiac remodeling and dysfunction, short-term or intermittent hypoxia can contribute towards protective adaptations that enhances the heart’s ability to protect itself from ischemic injury. This protective adaptation, also known as hypoxic preconditioning, drives the activation of several essential signaling pathways, including the hypoxia-inducible factor (HIF) signaling, reactive oxygen species (ROS) signaling, nitric oxide (NO) regulation, and ATP-sensitive potassium channel (KATP) mediated regulation, leading to metabolic reprogramming, angiogenesis with vascular remodeling, and enhanced calcium handling, thereby increasing resistance to ischemic heart disease. We discuss strategies such as hypoxic conditioning and pharmacologically activated HIF signaling, along with targeted approaches to enhance glycolysis and KATP channel regulation and optimize sarcoplasmic reticulum calcium ATPase 2a (SERCA2a) mediated calcium handling in cardiomyocytes. In this review, we explore the mechanisms and therapeutic potential of short-term or intermittent hypoxia-mediated cardioprotection. Additionally, we highlight the importance of addressing challenges and limitations of using hypoxic preconditioning in clinical practice.

References

Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell. 2012 Feb 3;148(3):399–408.

Ziello JE, Jovin IS, Huang Y. Hypoxia-Inducible Factor (HIF)-1 regulatory pathway and its potential for therapeutic intervention in malignancy and ischemia. Yale J Biol Med. 2007 Jun;80(2):51–60.

Grocott M, Montgomery H, Vercueil A. High-altitude physiology and pathophysiology: implications and relevance for intensive care medicine. Crit Care. 2007;11(1):203.

Das KK, Majid DSA, Prabhakar NR. Editorial: vascular pathophysiology in hypoxia. Front Physiol. 2023;14:1235383.

Kumar H, Choi DK. Hypoxia inducible factor pathway and physiological adaptation: a cell survival pathway? Mediators Inflamm. 2015;2015:584758.

Viscor G, Torrella JR, Corral L, Ricart A, Javierre C, Pages T, et al. Physiological and biological responses to short-term intermittent hypobaric hypoxia exposure: from sports and mountain medicine to new biomedical applications. Front Physiol. 2018;9:814.

Bagali S, Hadimani GA, Biradar MS, Das KK. Introductory chapter: primary concept of hypoxia and anoxia. In: Das KK, Biradar MS, editors. Hypoxia and Anoxia. Rijeka: IntechOpen; 2018. p. Ch. 1.

Gupta N, Zahid Ashraf M. Hypoxia signaling in cardiovascular diseases. In: K. Das K, Shivanagouda Biradar M, editors. Hypoxia and Anoxia [Internet]. IntechOpen; 2018 [cited 2024 Aug 11]. Available from: https://www.intechopen.com/books/hypoxia-and-anoxia/hypoxia-signaling-in-cardiovascular

-diseases.

Hausenloy DJ, Yellon DM. Myocardial ischemia-reperfusion injury: a neglected therapeutic target. J Clin Invest. 2013 Jan;123(1):92–100.

Yellon DM, Hausenloy DJ. Myocardial reperfusion injury. N Engl J Med. 2007 Sep 13;357(11):1121–35.

Hausenloy DJ, Yellon DM. Ischaemic conditioning and reperfusion injury. Nat Rev Cardiol. 2016 Apr;13(4):193–209.

Korge P, Ping P, Weiss JN. Reactive oxygen species production in energized cardiac mitochondria during hypoxia/reoxygenation. Circ Res. 2008 Oct 10;103(8):873–80.

Ping P, Murphy E. Role of p38 mitogen-activated protein kinases in preconditioning: a detrimental factor or a protective kinase? Circ Res. 2000 May 12;86(9):921–2.

Semenza GL. Oxygen sensing, hypoxia-inducible factors, and disease pathophysiology. Annu Rev Pathol. 2014;9:47–71.

Prabhakar NR, Semenza GL. Adaptive and maladaptive cardiorespiratory responses to continuous and intermittent hypoxia mediated by hypoxia-inducible factors 1 and 2. Physiol Rev. 2012 Jul;92(3):967–1003.

Doenst T, Nguyen TD, Abel ED. Cardiac metabolism in heart failure: implications beyond ATP production. Circ Res. 2013 Aug 30;113(6):709–24.

Lee P, Chandel NS, Simon MC. Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat Rev Mol Cell Biol. 2020 May;21(5):268–83.

Gassmann M. The impact of hypoxia on our body: from integrative physiology to human disease. Cell Mol Life Sci. 2009 Nov;66(22):3537–8.

Zhang L, Ma J, Liu H. Protective effect of ischemic postconditioning against ischemia reperfusion-induced myocardium oxidative injury in IR rats. Molecules. 2012 Mar 27;17(4):3805–17.

Rosenberg JH, Werner JH, Moulton MJ, Agrawal DK. Current modalities and mechanisms underlying cardioprotection by ischemic conditioning. J Cardiovasc Transl Res. 2018 Aug;11(4):292–307.

Loor G, Schumacker PT. Role of hypoxia-inducible factor in cell survival during myocardial ischemia-reperfusion. Cell Death Differ. 2008 Apr;15(4):686–90.

Otani H. Ischemic preconditioning: from molecular mechanisms to therapeutic opportunities. Antioxid Redox Signal. 2008 Feb;10(2):207–47.

Calmettes G, Ribalet B, John S, Korge P, Ping P, Weiss JN. Hexokinases and cardioprotection. J Mol Cell Cardiol. 2015 Jan;78:107–15.

Ong SG, Hausenloy DJ. Hypoxia-inducible factor as a therapeutic target for cardioprotection. Pharmacol Ther. 2012 Oct;136(1):69–81.

Eckle T, Köhler D, Lehmann R, El Kasmi KC, Eltzschig HK. Hypoxia-inducible factor-1 is central to cardioprotection. Circulation. 2008;118(2):166–75.

Zimna A, Kurpisz M. Hypoxia-inducible factor-1 in physiological and pathophysiological angiogenesis: applications and therapies. Biomed Res Int. 2015;2015:549412.

Sarkar K, Cai Z, Gupta R, Parajuli N, Fox-Talbot K, Darshan MS, et al. Hypoxia-inducible factor 1 transcriptional activity in endothelial cells is required for acute phase cardioprotection induced by ischemic preconditioning. Proc Natl Acad Sci U S A. 2012 Jun 26;109(26):10504–9.

Heck-Swain KL, Koeppen M. The intriguing role of hypoxia-inducible factor in myocardial ischemia and reperfusion: a comprehensive review. J Cardiovasc Dev Dis. 2023 May 14;10(5).

Hashimoto T, Shibasaki F. Hypoxia-inducible factor as an angiogenic master switch. Front Pediatr. 2015 Apr;3:33.

Kietzmann T, Mennerich D, Dimova EY. Hypoxia-inducible factors (HIFs) and phosphorylation: impact on stability, localization, and transactivity. Front Cell Dev Biol. 2016;4:11.

Ke Q, Costa M. Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol. 2006 Nov;70(5):1469–80.

Lucero García Rojas EY, Villanueva C, Bond RA. Hypoxia inducible factors as central players in the pathogenesis and pathophysiology of cardiovascular diseases. Front Cardiovasc Med. 2021;8:709509.

Cerychova R, Pavlinkova G. HIF-1, metabolism, and diabetes in the embryonic and adult heart. Front Endocrinol (Lausanne). 2018;9:460.

Zhao Y, Xiong W, Li C, Zhao R, Lu H, Song S, et al. Hypoxia-induced signaling in the cardiovascular system: pathogenesis and therapeutic targets. Signal Transduct Target Ther. 2023 Nov 20;8(1):431.

Shohet RV, Garcia JA. Keeping the engine primed: HIF factors as key regulators of cardiac metabolism and angiogenesis during ischemia. J Mol Med (Berl). 2007 Dec;85(12):1309–15.

Xu R, Wang F, Yang H, Wang Z. Action sites and clinical application of HIF-1α inhibitors. Molecules. 2022 May 26;27(11).

Hirota K. HIF-α prolyl hydroxylase inhibitors and their implications for biomedicine: a comprehensive review. Biomedicines. 2021 Apr 24;9(5).

Behrouzi B, Weyers JJ, Qi X, Barry J, Rabadia V, Manca D, et al. Action of iron chelator on intramyocardial hemorrhage and cardiac remodeling following acute myocardial infarction. Basic Res Cardiol. 2020 Mar 5;115(3):24.

Aarup A, Pedersen TX, Junker N, Christoffersen C, Bartels ED, Madsen M, et al. Hypoxia-Inducible Factor-1α Expression in Macrophages Promotes Development of Atherosclerosis. Arteriosclerosis, Thrombosis, and Vascular Biology. 2016 Sep 1;36(9):1782–90.

Knutson AK, Williams AL, Boisvert WA, Shohet RV. HIF in the heart: development, metabolism, ischemia, and atherosclerosis. J Clin Invest. 2021 Sep 1;131(17).

Rababa’h AM, Guillory AN, Mustafa R, Hijjawi T. Oxidative stress and cardiac remodeling: an updated edge. Curr Cardiol Rev. 2018 Mar 14;14(1):53–9.

Panth N, Paudel KR, Parajuli K. Reactive oxygen species: a key hallmark of cardiovascular disease. Adv Med. 2016;2016:9152732.

Buonocore G, Perrone S, Tataranno ML. Oxygen toxicity: chemistry and biology of reactive oxygen species. Semin Fetal Neonatal Med. 2010 Aug;15(4):186–90.

Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 2012 May;24(5):981–90.

Hong Y, Boiti A, Vallone D, Foulkes NS. Reactive oxygen species signaling and oxidative stress: transcriptional regulation and evolution. Antioxidants (Basel). 2024 Mar 1;13(3):312.

Li X, Zhang Q, Nasser MI, Xu L, Zhang X, Zhu P, et al. Oxygen homeostasis and cardiovascular disease: a role for HIF? Biomed Pharmacother. 2020 Aug;128:110338.

Kibel A, Lukinac AM, Dambic V, Juric I, Selthofer-Relatic K. Oxidative Stress in Ischemic Heart Disease. Oxid Med Cell Longev. 2020 Dec 29;2020:6627144.

Becker LB. New concepts in reactive oxygen species and cardiovascular reperfusion physiology. Cardiovasc Res. 2004;61(3):461–70.

Liu M, Galli G, Wang Y, Fan Q, Wang Z, Wang X, et al. Novel therapeutic targets for hypoxia-related cardiovascular diseases: the role of HIF-1. Front Physiol. 2020;11:774.

Harvey AP, Grieve DJ. Reactive oxygen species (ROS) signaling in cardiac remodeling and failure. In: Laher I, editor. Systems Biology of Free Radicals and Antioxidants. Berlin, Heidelberg: Springer Berlin Heidelberg; 2014. p. 951–92.

Rodrigo R, González-Montero J, Sotomayor CG. Novel combined antioxidant strategy against hypertension, acute myocardial infarction and postoperative atrial fibrillation. Biomedicines. 2021 May 30;9(6):620.

Rodrigo R, Prieto JC, Aguayo R, Ramos C, Puentes Á, Gajardo A, et al. Joint cardioprotective effect of vitamin C and other antioxidants against reperfusion injury in patients with acute myocardial infarction undergoing percutaneous coronary intervention. Molecules. 2021 Sep 21;26(18):5702.

Cadenas S. ROS and redox signaling in myocardial ischemia-reperfusion injury and cardioprotection. Free Radic Biol Med. 2018 Mar;117:76–89.

Russell EG, Cotter TG. New insight into the role of reactive oxygen sapecies (ROS) in cellular signal-transduction processes. Int Rev Cell Mol Biol. 2015;319:221–54.

Zhang Y, Du Y, Le W, Wang K, Kieffer N, Zhang J. Redox control of the survival of healthy and diseased cells. Antioxid Redox Signal. 2011 Dec 1;15(11):2867–908.

Hannemann J, Böger R. Dysregulation of the nitric oxide/dimethylarginine pathway in hypoxic pulmonary vasoconstriction-molecular mechanisms and clinical significance. Front Med (Lausanne). 2022;9:835481.

Gao F, Gao E, Yue TL, Ohlstein EH, Lopez BL, Christopher TA, et al. Nitric oxide mediates the antiapoptotic effect of insulin in myocardial ischemia-reperfusion. Circulation. 2002;105(12):1497–502.

Lee HM, Choi JW, Choi MS. Role of nitric oxide and protein S-nitrosylation in ischemia-reperfusion injury. Antioxidants (Basel). 2021 Dec 27;11(1):57.

Zhu D, Hou J, Qian M, Jin D, Hao T, Pan Y, et al. Nitrate-functionalized patch confers cardioprotection and improves heart repair after myocardial infarction via local nitric oxide delivery. Nat Commun. 2021 Jul 23;12(1):4501.

Banez MJ, Geluz MI, Chandra A, Hamdan T, Biswas OS, Bryan NS, et al. A systemic review on the antioxidant and anti-inflammatory effects of resveratrol, curcumin, and dietary nitric oxide supplementation on human cardiovascular health. Nutr Res. 2020 Jun;78:11–26.

Russo I, Barale C, Melchionda E, Penna C, Pagliaro P. Platelets and cardioprotection: the role of nitric oxide and carbon oxide. Int J Mol Sci. 2023 Mar 24;24(7).

Bolli R. Cardioprotective function of inducible nitric oxide synthase and role of nitric oxide in myocardial ischemia and preconditioning: an overview of a decade of research. J Mol Cell Cardiol. 2001 Nov;33(11):1897–918.

Liang H, Nacharaju P, Friedman A, Friedman JM. Nitric Oxide Generating/Releasing Materials. Future Sci OA. 2015 Aug;1(1):FSO54.

Zhu Z, Sierra A, Burnett CML, Chen B, Subbotina E, Koganti SRK, et al. Sarcolemmal ATP-sensitive potassium channels modulate skeletal muscle function under low-intensity workloads. J Gen Physiol. 2014 Jan 1;143(1):119–34.

Paggio A, Checchetto V, Campo A, Menabò R, Di Marco G, Di Lisa F, et al. Identification of an ATP-sensitive potassium channel in mitochondria. Nature. 2019 Aug 29;572(7771):609–13.

Foster MN, Coetzee WA. KATP Channels in the Cardiovascular System. Physiol Rev. 2016 Jan;96(1):177–252.

Zingman LV, Alekseev AE, Hodgson-Zingman DM, Terzic A. ATP-sensitive potassium channels: metabolic sensing and cardioprotection. J Appl Physiol (1985). 2007 Nov;103(5):1888–93.

Jin C, Wu J, Watanabe M, Okada T, Iesaki T. Mitochondrial K+ channels are involved in ischemic postconditioning in rat hearts. J Physiol Sci. 2012 Jul;62(4):325–32.

Behera R, Sharma V, Grewal AK, Kumar A, Arora B, Najda A, et al. Mechanistic correlation between mitochondrial permeability transition pores and mitochondrial ATP dependent potassium channels in ischemia reperfusion. Biomed Pharmacother. 2023 Jun;162:114599.

Mohammed Abdul KS, Jovanović S, Du Q, Sukhodub A, Jovanović A. A link between ATP and SUR2A: A novel mechanism explaining cardioprotection at high altitude. Int J Cardiol. 2015 Jun 15;189:73–6.

Mohammed Abdul KS, Jovanović S, Du Q, Sukhodub A, Jovanović A. Mild hypoxia in vivo regulates cardioprotective SUR2A: A role for Akt and LDH. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease. 2015 May;1852(5):709–19.

Mohammed Abdul KS, Jovanović S, Jovanović A. Exposure to 15% oxygen in vivo up‐regulates cardioprotective SUR2A without affecting ERK1/2 and AKT: a crucial role for AMPK. J Cell Mol Med. 2017 Jul;21(7):1342–50.

Mohammed Abdul KS, Jovanović S, Sukhodub A, Du Q, Jovanović A. Upregulation of cardioprotective SUR2A by sub-hypoxic drop in oxygen. Biochim Biophys Acta. 2014 Nov;1843(11):2424–31.

Ardehali H. Signaling mechanisms in ischemic preconditioning. Circ Res. 2006;99(8):798–800.

Ichinose M, Yonemochi H, Sato T, Saikawa T. Diazoxide triggers cardioprotection against apoptosis induced by oxidative stress. Am J Physiol Heart Circ Physiol. 2003 Jun;284(6):H2235-41.

Suzuki M, Saito T, Sato T, Tamagawa M, Miki T, Seino S, et al. Cardioprotective effect of diazoxide is mediated by activation of sarcolemmal but not mitochondrial ATP-sensitive potassium channels in mice. Circulation. 2003 Feb 11;107(5):682–5.

Rim SJ, Hong GR, Im JW, Min PK, Mun JY, Seo HS, et al. The cardioprotective effect of intravenous nicorandil for ischemia/reperfusion injury. Korean Circ J. 2005;35:88–93.

Sukhodub A, Du Q, Jovanović S, Jovanović A. Nicotinamide-rich diet protects the heart against ischaemia-reperfusion in mice: a crucial role for cardiac SUR2A. Pharmacol Res. 2010 Jun;61(6):564–70.

Sukhodub A, Sudhir R, Du Q, Jovanović S, Reyes S, Jovanović A. Nicotinamide-rich diet improves physical endurance by up-regulating SUR2A in the heart. J Cell Mol Med. 2011 Aug;15(8):1703–12.

Sinha S, Du Q, Jovanović S, Sukhodub A, Jovanović A. Pyrazinamide may possess cardioprotective properties. J Antibiot (Tokyo). 2019 Sep;72(9):714–7.

Hu Y, Lu H, Li H, Ge J. Molecular basis and clinical implications of HIFs in cardiovascular diseases. Trends Mol Med. 2022 Nov;28(11):916–38.

Cox GK, Gillis TE. Surviving anoxia: the maintenance of energy production and tissue integrity during anoxia and reoxygenation. J Exp Biol. 2020 Jul 10;223(Pt 13).

Kuhn AR, van Bilsen M. Oncometabolism: a paradigm for the metabolic remodeling of the failing heart. Int J Mol Sci. 2022 Nov 11;23(22).

Yamakawa M, Liu LX, Date T, Belanger AJ, Vincent KA, Akita GY, et al. Hypoxia-inducible factor-1 mediates activation of cultured vascular endothelial cells by inducing multiple angiogenic factors. Circ Res. 2003 Oct 3;93(7):664–73.

Gogiraju R, Bochenek ML, Schäfer K. Angiogenic endothelial cell signaling in cardiac hypertrophy and heart failure. Front Cardiovasc Med. 2019;6:20.

Fong GH. Mechanisms of adaptive angiogenesis to tissue hypoxia. Angiogenesis. 2008 Jun;11(2):121–40.

Martín-Bórnez M, Falcón D, Morrugares R, Siegfried G, Khatib AM, Rosado JA, et al. New insights into the reparative angiogenesis after myocardial infarction. IJMS. 2023 Aug 1;24(15):12298.

Chang JC, Lien CF, Lee WS, Chang HR, Hsu YC, Luo YP, et al. Intermittent hypoxia prevents myocardial mitochondrial Ca2+ overload and cell death during ischemia/reperfusion: the role of reactive oxygen species. Cells. 2019 Jun 9;8(6):564.

Mallet RT, Manukhina EB, Ruelas SS, Caffrey JL, Downey HF. Cardioprotection by intermittent hypoxia conditioning: evidence, mechanisms, and therapeutic potential. Am J Physiol Heart Circ Physiol. 2018 Aug 1;315(2):H216–32.

Jiang Q, Wang L, Si X, Tian JL, Zhang Y, Gui HL, et al. Current progress on the mechanisms of hyperhomocysteinemia-induced vascular injury and use of natural polyphenol compounds. Eur J Pharmacol. 2021 Aug;905:174168.

Huang X, Akgün EE, Mehmood K, Zhang H, Tang Z, Li Y. Mechanism of hypoxia-mediated smooth muscle cell proliferation leading to vascular remodeling. Pabelick C, editor. BioMed Res Int. 2022 Dec 24;2022:3959845.

Wang X, Khalil RA. Matrix metalloproteinases, vascular remodeling, and vascular disease. In: Advances in Pharmacology [Internet]. Elsevier; 2018 [cited 2024 Aug 8]. p. 241–330. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1054358917300571.

Monaci S, Coppola F, Filippi I, Falsini A, Carraro F, Naldini A. Targeting hypoxia signaling pathways in angiogenesis. Front Physiol. 2024 Apr 25;15:1408750.

Aghajanian A, Zhang H, Buckley BK, Wittchen ES, Ma WY, Faber JE. Decreased inspired oxygen stimulates de novo formation of coronary collaterals in adult heart. J Mol Cell Cardiol. 2021 Jan;150:1–11.

Renna NF, De Las Heras N, Miatello RM. Pathophysiology of vascular remodeling in hypertension. Int J Hypertens. 2013;2013:808353.

Risler NR, Cruzado MC, Miatello RM. Vascular remodeling in experimental hypertension. Scientific World Journal. 2005;5:959–71.

van Beek JHGM. Effects of hypoxia and hypercapnia on cardiac contractility and energetics. In: Dahan A, Teppema L, Van Beek JHGM, editors. Physiology And Pharmacology of Cardio-Respiratory Control. Dordrecht: Springer Netherlands; 1998; p. 19–24.

Wheaton WW, Chandel NS. Hypoxia. 2. Hypoxia regulates cellular metabolism. Am J Physiol Cell Physiol. 2011 Mar;300(3):C385–93.

Chen S, Zou Y, Song C, Cao K, Cai K, Wu Y, et al. The role of glycolytic metabolic pathways in cardiovascular disease and potential therapeutic approaches. Basic Res Cardiol. 2023 Nov 8;118(1):48.

Silter M, Kögler H, Zieseniss A, Wilting J, Schäfer K, Toischer K, et al. Impaired Ca(2+)-handling in HIF-1alpha(+/-) mice as a consequence of pressure overload. Pflugers Arch. 2010 Mar;459(4):569–77.

Lipskaia L, Chemaly ER, Hadri L, Lompre AM, Hajjar RJ. Sarcoplasmic reticulum Ca(2+) ATPase as a therapeutic target for heart failure. Expert Opin Biol Ther. 2010 Jan;10(1):29–41.

Toldo S, Abbate A. Diastolic dysfunction in chronic hypoxia: IL-18 provides the elusive link. Acta Physiol. 2014 Oct 8;213(2):298–300.

Rajgarhia A, Ayasolla KR, Zaghloul N, Lopez Da Re JM, Miller EJ, Ahmed M. Extracellular superoxide dismutase (EC-SOD) regulates gene methylation and cardiac fibrosis during chronic hypoxic stress. Front Cardiovasc Med. 2021 May 31;8:669975.

Xie S, Deng Y, Pan Y ying, Ren J, Jin M, Wang Y, et al. Chronic intermittent hypoxia induces cardiac hypertrophy by impairing autophagy through the adenosine 5′-monophosphate-activated protein kinase pathway. Arch Biochem Biophys. 2016 Sep;606:41–52.

Chen L, Einbinder E, Zhang Q, Hasday J, Balke CW, Scharf SM. Oxidative stress and left ventricular function with chronic intermittent hypoxia in rats. Am J Respir Crit Care Med. 2005 Oct 1;172(7):915–20.

Hartupee J, Mann DL. Neurohormonal activation in heart failure with reduced ejection fraction. Nat Rev Cardiol. 2017 Jan;14(1):30–8.

Panza GS, Puri S, Lin HS, Badr MS, Mateika JH. Daily exposure to mild intermittent hypoxia reduces blood pressure in male patients with obstructive sleep apnea and hypertension. Am J Respir Crit Care Med. 2022 Apr 15;205(8):949–58.

Tekin D, Dursun AD, Xi L. Hypoxia inducible factor 1 (HIF-1) and cardioprotection. Acta Pharmacol Sin. 2010 Sep;31(9):1085–94.

Panza GS, Puri S, Lin HS, Badr MS, Mateika JH. Daily Exposure to Mild Intermittent Hypoxia Reduces Blood Pressure in Male Patients with Obstructive Sleep Apnea and Hypertension. Am J Respir Crit Care Med. 2022 Apr 15;205(8):949–58.

Hausenloy DJ, Candilio L, Laing C, Kunst G, Pepper J, Kolvekar S, et al. Effect of remote ischemic preconditioning on clinical outcomes in patients undergoing coronary artery bypass graft surgery (ERICCA): rationale and study design of a multi-centre randomized double-blinded controlled clinical trial. Clin Res Cardiol. 2012 May;101(5):339–48.

White SK, Frohlich GM, Sado DM, Maestrini V, Fontana M, Treibel TA, et al. Remote ischemic conditioning reduces myocardial infarct size and edema in patients with ST-segment elevation myocardial infarction. JACC Cardiovasc Interv. 2015 Jan;8(1 Pt B):178–88.

Zhang Q, Zhao W, Li S, Ding Y, Wang Y, Ji X. Intermittent hypoxia conditioning: a potential multi-organ protective therapeutic strategy. Int J Med Sci. 2023;20(12):1551–61.

Bulluck H, Sirker A, Loke YK, Garcia-Dorado D, Hausenloy DJ. Clinical benefit of adenosine as an adjunct to reperfusion in ST-elevation myocardial infarction patients: An updated meta-analysis of randomized controlled trials. Int J Cardiol. 2016 Jan 1;202:228–37.

Desmet W, Bogaert J, Dubois C, Sinnaeve P, Adriaenssens T, Pappas C, et al. High-dose intracoronary adenosine for myocardial salvage in patients with acute ST-segment elevation myocardial infarction. Eur Heart J. 2011 Apr;32(7):867–77.

Roolvink V, Ibáñez B, Ottervanger JP, Pizarro G, van Royen N, Mateos A, et al. Early Intravenous Beta-Blockers in Patients With ST-Segment Elevation Myocardial Infarction Before Primary Percutaneous Coronary Intervention. J Am Coll Cardiol. 2016 Jun 14;67(23):2705–15.

Deguchi H, Ikeda M, Ide T, Tadokoro T, Ikeda S, Okabe K, et al. Roxadustat Markedly Reduces Myocardial Ischemia Reperfusion Injury in Mice. Circ J. 2020 May 25;84(6):1028–33.

Navarrete-Opazo A, Mitchell GS. Therapeutic potential of intermittent hypoxia: a matter of dose. Am J Physiol Regul Integr Comp Physiol. 2014 Nov 15;307(10):R1181-1197.

Baranauskas MN, Fulton TJ, Fly AD, Martin BJ, Mickleborough TD, Chapman RF. High intraindividual variability in the response of serum erythropoietin to multiple simulated altitude exposures. High Alt Med Biol. 2022 Mar;23(1):85–9.

Timon R, Martinez-Guardado I, Brocherie F. Effects of intermittent normobaric hypoxia on health-related outcomes in healthy older adults: a systematic review. Sports Med Open. 2023 Feb 26;9(1):19.

Spiegelberg L, Houben R, Niemans R, De Ruysscher D, Yaromina A, Theys J, et al. Hypoxia-activated prodrugs and (lack of) clinical progress: the need for hypoxia-based biomarker patient selection in phase III clinical trials. Clin Transl Radiat Oncol. 2019 Feb;15:62–9.

Han YS, Lee JH, Lee SH. Regulation of hypoxia-induced cell death and application of hypoxic preconditioning to stem cell transplantation. J Transplant Stem Cel Biol. 2014;2(1):5.

Verges S, Chacaroun S, Godin-Ribuot D, Baillieul S. Hypoxic Conditioning as a New Therapeutic Modality. Front Pediatr. 2015 Jun 22;3:58.

Published
2024/10/27
Section
Review articles