A clinical perspective of therapeutic drug monitoring of cyclosporine in pediatric patients with kidney transplant
Abstract
Cyclosporine A (CsA) is an immunosuppressive used in both children and adult transplant recipients, as well as patients with autoimmune diseases such as nephrotic syndrome. Therapeutic drug monitoring (TDM) of CsA is essential due to its significant interindividual and intraindividual pharmacokinetic variability, narrow therapeutic index and the risk of organ rejection or autoimmune disease relapse at subtherapeutic levels, as well as the potential for serious adverse effects with overexposure. In pediatric patients, CsA pharmacokinetics can be significantly influenced by developmental physiological factors, necessitating even greater attention to TDM in this vulnerable population. This paper explores the key challenges associated with TDM in children, the clinical rationale for its use, clinical settings where it is applied and future perspectives, including the potential of model-informed precision dosing (MIPD).
References
SmPC ciclosporin [Internet]. Summary of Product Characteristic for ciclosporin (eMC) [cited 2025 June 30]. Available from: https://www.medicines.org.uk/emc/product/5300/smpc.
Matsuda S, Koyasu S. Mechanisms of action of cyclosporine. Immunopharmacology. 2000;47(2–3):119–25.
Zdanowicz MM. The pharmacology of immunosuppression. Am J Pharm Educ. 2009;73:144.
Wiseman AC. Immunosuppressive medications. Clin J Am Soc Nephrol. 2016;11:332–43.
Schiff J, Cole E, Cantarovich M. Therapeutic monitoring of calcineurin inhibitors for the nephrologist. Clin J Am Soc Nephrol. 2007;2:374–84.
Hansen CM, Bachmann S, Su M, Budde K, Choi M. Calcineurin inhibitor associated nephrotoxicity in kidney transplantation – A transplant nephrologist's perspective. Acta Physiol (Oxf). 2025;241(5):e70047. doi: 10.1111/apha/70047.
Lindholm A, Dahlqvist R, Groth GG, Sjöqvist F. A prospective study of cyclosporine concentration in relation to its therapeutic effect and toxicity after renal transplantation. Br J Clin Pharmacol. 1990;30(3):443–52.
Ershad Ershad A, Taziki S, Ebrahimian, M, Abadi SSD. Acute cyclosporine overdose: A systematic review. Med Clin Pract. 2023;6(2):100358.
Liverman R, Chandran MM, Crowther B. Considerations and controversies of pharmacologic management of the pediatric kidney transplant recipient. Pharmacotherapy. 2021;41(1):77–102.
Kasiske BL, Zeier MG, Chapman JR, Craig JC, Ekberg H, Garvey CA, et al. Kidney disease: improving global outcomes. KDIGO clinical practice guideline for the care of kidney transplant recipients: a summary. Kidney Int. 2010;77(4):299–311.
Jovanović M, Vučićević K. Pediatric pharmacokinetic considerations and implications for drug dosing. Arh farm. 2022;72(3):340–52.
Watanabe H, Nagano N, Tsuji Y, Noto N, Ayusawa M, Morioka I. Challenges of pediatric pharmacotherapy: A narrative review of pharmacokinetics, pharmacodynamics, and pharmacogenetics. Eur J Clin Pharmacol. 2024;80(2):203–21.
Hebert SA, Swinford RD, Hall DR, Au JK, Bynon JS. Special considerations in pediatric kidney transplantation. Adv Chronic Kidney Dis. 2017;24(6):398–404.
FDA cyclosporine [Internet]. Food and Drug Administration prescribing information for NEORAL® Soft Gelatin Capsules (cyclosporine capsules) and NEORAL® Oral Soultion (cyclosporine oral solution) [cited 2025 June 30]. Available from: https://www.accessdata.fda.gov/drugsatfda_docs/label/2009/050715s027,050716s028lbl.pdf.
Shah MB, Martin JE, Schroeder TJ, First MR. The evaluation of the safety and tolerability of two formulations of cyclosporine: Neoral and Sandimmune. A meta-analysis. Transplantation. 1999;67:1411.
Nozu K, Iijima K, Sakaeda T, Okumura K, Nakanishi K, Yoshikawa N, et al. Cyclosporin A absorption profiles in children with nephrotic syndrome. Pediatr Nephrol. 2005;20(7):910–3.
Dunn CJ, Wagstaff AJ, Perry CM, Plosker GL, Goa KL. Cyclosporin: an updated review of the pharmacokinetic properties, clinical efficacy and tolerability of a microemulsion-based formulation (neoral) 1 in organ transplantation. Drugs. 2001;61(13):1957–2016.
Fanta S, Jönsson S, Backman JT, Karlsson MO, Hoppu K. Developmental pharmacokinetics of ciclosporin-a population pharmacokinetic study in paediatric renal transplant candidates. Br J Clin Pharmacol. 2007;64(6):772–84.
Mourad M, Wallemacq P, De Meyer M, Malaise J, De Pauw L, Eddour DC, et al. Biotransformation enzymes and drug transporters pharmacogenetics in relation to immunosuppressive drugs: impact on pharmacokinetics and clinical outcome. Transplantation. 2008;85(7 Suppl):S19–24.
Kuehl P, Zhang J, Lin Y, Lamba J, Assem M, Schuetz J, et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. 2001;27(4):383–91.
Xie HG, Wood AJ, Kim RB, Stein CM, Wilkinson GR. Genetic variability in CYP3A5 and its possible consequences. Pharmacogenomics. 2004;5(3):243–72.
Cvetković M, Zivković M, Bundalo M, Gojković I, Spasojević-Dimitrijeva B, Stanković A, et al. Effect of age and allele variants of CYP3A5, CYP3A4, and POR genes on the pharmacokinetics of cyclosporin A in pediatric renal transplant recipients from Serbia. Ther Drug Monit. 2017;39(6):589–95.
MacPhee IA, Holt DW. A pharmacogenetic strategy for immunosuppression based on the CYP3A5 genotype. Transplantation. 2008;27:163–5.
Hu YF, Qiu W, Liu ZQ, Zhu LJ, Liu ZQ, Tu JH, et al. Effects of genetic polymorphisms of CYP3A4, CYP3A5 and MDRl on cyclosporine pharmacokinetics after renal transplantation. Clin Exp Pharmacol Physiol. 2006;33:1093–8.
Qiu XY, Jiao Z, Zhang M, Zhong LJ, Liang HQ, Ma CL, et al. Association of MDRl CYP3A4*18B, and CYP3A5*3 polymorphisms with cyclosporine pharmacokinetics in Chinese renal transplant recipients. Eur J Clin Pharmacol. 2008;64: 1069–84.
Wang D, Guo Y, Wrighton SA, Cooke GE, Sadee W. Intronic polymorphism in CYP3A4 affects hepatic expression and response to statin drugs. Pharmacogenomics J. 2011;11:274–86.
Elens L, van Schaik RH, Panin N, de Meyer M, Wallemacq P, Lison D, et al. Effect of a new functional CYP3A4 polymorphism on calcineurin inhibitors’ dose requirements and trough blood levels in stable renal transplant patients. Pharmacogenomics. 2011;12:1383–96.
Evans WE, McLeod HL. Pharmacogenomics-drug disposition, drug targets, and side effects. N Engl J Med. 2003;348(6):538–49.
Yang Y, Zhu Y, Xia L, Chai Y, Quan D, Xue Q, et al. Population pharmacokinetics of cyclosporine A in hematopoietic stem cell transplant recipients: A systematic review. Eur J Pharm Sci. 2025;204:106882.
Krekels EHJ, Rower JE, Constance JE, Knibbe CAJ, Sherwin CMT. Hepatic drug metabolism in pediatric patients. In: Xie W, editor. Drug Metabolism in Diseases. San Francisco (CA): Elsevier Inc; 2017; p. 181–206.
Burckart GJ, Venkataramanan R, Ptachcinski RJ, Starzl TE, Griffith BP, Hakala TR, et al. Cyclosporine pharmacokinetic profiles in liver, heart, and kidney transplant patients as determined by high-performance liquid chromatography. Transplant Proc. 1986;18(6 Suppl 5):129–36.
Burckart GJ, Starzl TE, Williams L, Sanghvi A, Gartner C, Venkataramanan R, et al. Cyclosporine Monitoring and Pharmacokinetics in Pediatrie Liver Transplant Patients. Transplant Proc. 1985;17:1172–5.
Bauer LA. Applied clinical pharmacokinetics, 2nd ed. London: McGraw – Hill Medical; 2008.
Kocur A, Kot B, Moczulski M, Czajkowska A, Rubik J, Sierakowski M, et al. A novel approach to therapeutic drug monitoring of Ciclosporin in pediatric renal transplant recipients using volumetric absorptive microsampling (VAMS) – Teaching old dog new tricks. Clin Chim Acta. 2024;562:119877.
Russ G, Segoloni G, Oberbauer R, Legendre C, Mota A, Eris J, et al. Superior outcomes in renal transplantation after early cyclosporine withdrawal and sirolimus maintenance therapy, regardless of baseline renal function. Transplantation. 2005;80(9):1204–11.
Lindholm A, Kahan BD. Influence of cyclosporine pharmacokinetics, trough concentrations, and AUC monitoring on outcome after kidney transplantation. Clin Pharmacol Therapeutics. 1993;54:205.
Schroeder TJ, Hariharan S, First MR. Relationship between cyclosporine bioavailability and clinical outcome in renal transplant recipients. Transplant Proc. 1994;26:2787.
Johnston A, David O, Cooney G. Pharmacokinetic validation of neoral absorption profiling. Transplant Proc.2000;32:53S.
Mahalati K, Belitsky P, Sketris I, West K, Panek R. Neoral monitoring by simplified sparse sampling area under the concentration-time curve: its relationship to acute rejection and cyclosporine nephrotoxicity early after kidney transplantation. Transplantation. 1999;68(1):55–62.
Keown P (on behalf of the Canadian Neoral Study Group). Absorption profiling of cyclosporine microemulsion (Neoral) during the first 2 weeks after renal transplantation. Transplantation. 2001;72:1024.
Mahalati K, Belitsky P, West K, Kiberd B, Fraser A, Sketris I, et al. Approaching the therapeutic window for cyclosporine in kidney transplantation: a prospective study. J Am Soc Nephrol. 2001;12(4):828–33.
International Neoral Renal Transplantation Study Group. Cyclosporine microemulsion (Neoral) absorption profiling and sparse-sample predictors during the first 3 months after renal transplantation. Am J Transplant.2002;2:148.
Cantarovich M, Barkun JS, Tchervenkov JI, Besner JG, Aspeslet L, Metrakos P. Comparison of neoral dose monitoring with cyclosporine through levels versus 2-hr postdose levels in stable liver transplant patients. Transplantation. 1998;66(12):1621–7.
Barakat O, Peaston R, Rai R, Talbot D, Manas D. Clinical benefit of monitoring cyclosporine C2 and C4 in long-term liver transplant recipients. Transplant Proc. 2002;34(5):1535–7.
Halloran PF, Helms LM, Kung L, Noujaim J. The temporal profile of calcineurin inhibition by cyclosporine in vivo. Transplantation. 1999;68:1356.
Roganović M, Homšek A, Jovanović M, Topić Vučenović V, Ćulafić M, Miljković B, Vučićević K. Concept and utility of population pharmacokinetic and pharmacokinetic/pharmacodynamic models in drug development and clinical practice. Arh farm. 2021;71(4):336–53.
Hughes JH, Tong DMH, Lucas SS, Faldasz JD, Goswami S, Keizer RJ. Continuous learning in model-informed precision dosing: A case study in pediatric dosing of vancomycin. Clin Pharmacol Ther. 2021;109(1):233–42.
Mould DR, Upton RN. Basic concepts in population modeling, simulation, and model-based drug development. CPT Pharmacometrics Syst Pharmacol. 2012;1(9):e6. doi: 10.1038/psp.2012.4.
Mould DR, Upton RN. Basic concepts in population modeling, simulation, and model-based drug development-part 2: introduction to pharmacokinetic modeling methods. CPT Pharmacometrics Syst Pharmacol. 2013;2(4):e38.doi: 10.1038/psp.2013.14.
Umpiérrez M, Guevara N, Ibarra M, Fagiolino P, Vázquez M, Maldonado C. Development of a population pharmacokinetic model for cyclosporine from therapeutic drug monitoring data. Biomed Res Int. 2021;2021:3108749.
Irtan S, Saint-Marcoux F, Rousseau A, Zhang D, Leroy V, Marquet P, et al. Population pharmacokinetics and bayesian estimator of cyclosporine in pediatric renal transplant patients. Ther Drug Monit. 2007;29(1):96–102.
Cai R, Zhang L, Wu T, Huang Y, Lu J, Huang T, et al. Population pharmacokinetics of cyclosporine A in pediatric patients with thalassemia undergoing allogeneic hematopoietic stem cell transplantation. Eur J Clin Pharmacol. 2024;80(5):685–96.
Back HM, Lee JB, Han N, Goo S, Jung E, Kim J, et al. Application of size and maturation functions to population pharmacokinetic modeling of pediatric patients. Pharmaceutics. 2019;11(6):259.
Woillard J-B, Saint-Marcoux F, Debord J, Åsberg A. Pharmacokinetic models to assist the prescriber in choosing the best tacrolimus dose. Pharmacol Res. 2018;130:316–21.
Brocks DR, Hamdy DA. Bayesian estimation of pharmacokinetic parameters: an important component to include in the teaching of clinical pharmacokinetics and therapeutic drug monitoring. Res Pharm Sci. 2020;15(6):503–14.
Wilhelm AJ, den Burger JC, Swart EL. Therapeutic drug monitoring by dried blood spot: progress to date and future directions. Clin Pharmacokinet. 2014;53(11):961–73.
Koster RA, Veenhof H, Botma R, Hoekstra AT, Berger SP, Bakker SJ, et al. Dried blood spot validation of five immunosuppressants, without hematocrit correction, on two LC-MS/MS systems. Bioanalysis. 2017;9(7):553–63.
Veenhof H, Koster RA, Alffenaar JC, Berger SP, Bakker SJL, Touw DJ. Clinical Validation of Simultaneous Analysis of Tacrolimus, Cyclosporine A, and Creatinine in Dried Blood Spots in Kidney Transplant Patients. Transplantation. 2017;101(7):1727–33.
Knight SR, Thorne A, Lo Faro ML. Donor-specific cell-free DNA as a biomarker in solid organ transplantation. A systematic review. Transplantation. 2019;103(2):273–83.
