Uticaj postupka sušenja raspršivanjem na svojstva polielektrolitnih kompleksa hitozana i ksantan gume kao nosača za peroralnu isporuku ibuprofenabuprofena

  • Ana Ćirić Univerzitet u Beogradu - Farmaceutski fakultet, Katedra za farmaceutsku tehnologiju i kozmetologiju
  • Jelena Milinković Budinčić Univerzitet u Novom Sadu - Tehnološki fakultet, Katedra za biotehnologiju i farmaceutsko inženjerstvo
  • Đorđe Medarević Univerzitet u Beogradu - Farmaceutski fakultet, Katedra za farmaceutsku tehnologiju i kozmetologiju
  • Vladimir Dobričić Univerzitet u Beogradu - Farmaceutski fakultet, Katedra za farmaceutsku hemiju
  • Milena Rmandić Univerzitet u Beogradu - Farmaceutski fakultet, Katedra za analitiku lekova
  • Tanja Barudžija Univerzitet u Beogradu - Institut za nuklearne nauke “Vinča”, Laboratorija za teorijsku fiziku i fiziku kondenzovane materije
  • Anđelija Malenović Univerzitet u Beogradu - Farmaceutski fakultet, Katedra za analitiku lekova
  • Lidija Petrović Univerzitet u Novom Sadu - Tehnološki fakultet, Katedra za biotehnologiju i farmaceutsko inženjerstvo
  • Ljiljana Đekić Univerzitet u Beogradu - Farmaceutski fakultet, Katedra za farmaceutsku tehnologiju i kozmetologiju
Ključne reči: hitozan, ksantan guma, ibuprofen, sušenje raspršivanjem, kontrolisano oslobađanje

Sažetak


Polielektrolitni kompleksi (PEK) su atraktivni nosači sa potencijalom poboljšanja peroralne isporuke slabo rastvorljivih visokodoziranih lekovitih supstanci niske molekulske mase. Formulisanje čvrstih oralnih farmaceutskih oblika na bazi PEK zahteva njihovo sušenje, što može uticati na fizičko-hemijska i biofarmaceutska svojstva kompleksa. Cilj ove studije bio je da se ispita efekat sušenja raspršivanjem na svojstva PEK hitozana i ksantan gume u koje je inkorporiran ibuprofen i da se proceni kinetika oslobađanja lekovite supstance iz takvih PEK napunjenih u tvrde kapsule u poređenju sa odgovarajućim PEK koji su sušeni pod ambijentalnim uslovima. Prinos, sadržaj ibuprofena, efikasnost inkorporiranja i sadržaj vlage PEK sušenih raspršivanjem bili su niži nego kod PEK sušenih pod ambijentalnim uslovima. Bolja protočnost PEK osušenih raspršivanjem je posledica skoro sfernog oblika čestica, što je pokazano skenirajućom elektronskom mikroskopijom. Rezultati DSC i PXRD analiza su potvrdili amorfizaciju ibuprofena tokom sušenja raspršivanjem. Ispitivani PEK osušeni pod različitim uslovima imali su visoku sposobnost rehidratacije u 0,1 M hlorovodoničnoj kiselini (pH 1,2) i fosfatnom puferu pH 7,4. In vitro oslobađanje ibuprofena iz osušenih PEK bilo je kontrolisano tokom 12 h uz oslobađanje približno 30% inkorporiranog ibuprofena. PEK sušeni raspršivanjem obezbedili su bolju kontrolu difuzije ibuprofena iz nosača u poređenju sa onima sušenim pod ambijentalnim uslovima.

Reference

Savjani KT, Gajjar AK, Savjani JK. Drug Solubility: Importance and Enhancement Techniques. ISRN Pharm. 2012;2012:1–10.

Meka VS, Sing MKG, Pichika MR, Nali SR, Kolapalli VRM, Kesharwani P. A comprehensive review on polyelectrolyte complexes. Drug Discov Today. 2017;22(11):1697–706.

Berger J, Reist M, Mayer JM, Felt O, Gurny R. Structure and interactions in chitosan hydrogels formed by complexation or aggregation for biomedical applications. Eur J Pharm Biopharm. 2004;57(1):35–52.

Berger J, Reist M, Mayer JM, Felt O, Peppas NA, Gurny R. Structure and interactions in covalently and ionically crosslinked chitosan hydrogels for biomedical applications. Eur J Pharm Biopharm. 2004;57(1):19–34.

Ćirić A, Krajišnik D, Čalija B, Đekić L. Biocompatible non-covalent complexes of chitosan and different polymers: Characteristics and application in drug delivery. Arh Farm (Belgr). 2020;70(4):173–97.

Bigucci F, Luppi B, Cerchiara T, Sorrenti M, Bettinetti G, Rodriguez L, et al. Chitosan/pectin polyelectrolyte complexes: Selection of suitable preparative conditions for colon-specific delivery of vancomycin. Eur J Pharm Sci. 2008;35(5):435–41.

Bhattarai N, Gunn J, Zhang M. Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev. 2010;62(1):83–99.

Naidu VGM, Madhusudhana K, Sashidhar RB, Ramakrishna S, Khar RK, Ahmed FJ, et al. Polyelectrolyte complexes of gum kondagogu and chitosan, as diclofenac carriers. Carbohydr Polym. 2009;76(3):464–71.

Maurstad G, Kitamura S, Stokke BT. Isothermal titration calorimetry study of the polyelectrolyte complexation of xanthan and chitosan samples of different degree of polymerization. Biopolymers. 2012;97(1):1–10.

Ćirić A, Medarević, Čalija B, Dobričić V, Mitrić M, Djekic L, et al. Study of chitosan/xanthan gum polyelectrolyte complexes formation, solid state and influence on ibuprofen release kinetics. Int J Biol Macromol. 2020;148:942–55.

Toniazzo T, Berbel IF, Cho S, Fávaro-Trindade CS, Moraes ICF, Pinho SC. β-carotene-loaded liposome dispersions stabilized with xanthan and guar gums: Physico-chemical stability and feasibility of application in yogurt. LWT - Food Sci Technol. 2014;59(2P2):1265–73.

Petri DFS. Xanthan gum: A versatile biopolymer for biomedical and technological applications. J Appl Polym Sci. 2015;132(23):42035.

Moin A, Shivakumar H, Deb T, Ramireddy B. In vitro-in vivo evaluation of xanthan gum and eudragit inter polyelectrolyte complex based sustained release tablets. Int J Pharm Investig. 2015;5(1):65–72.

Argin-Soysal S, Kofinas P, Lo YM. Effect of complexation conditions on xanthan-chitosan polyelectrolyte complex gels. Food Hydrocoll. 2009;23:202–9.

Ćirić A, Medarević Đ, Čalija B, Dobričić V, Rmandić M, Barudžija T, et al. Effect of ibuprofen entrapment procedure on physicochemical and controlled drug release performances of chitosan/xanthan gum polyelectrolyte complexes. Int J Biol Macromol. 2021;167:547–58.

Hamman JH. Chitosan based polyelectrolyte complexes as potential carrier materials in drug delivery systems. Mar Drugs. 2010;8(4):1305–22.

Bourganis V, Karamanidou T, Kammona O, Kiparissides C. Polyelectrolyte complexes as prospective carriers for the oral delivery of protein therapeutics. Eur J Pharm Biopharm. 2017;111:44–60.

Cerchiara T, Abruzzo A, Parolin C, Vitali B, Bigucci F, Gallucci MC, et al. Microparticles based on chitosan/carboxymethylcellulose polyelectrolyte complexes for colon delivery of vancomycin. Carbohydr Polym. 2016;143:124–30.

Bigucci F, Abruzzo A, Vitali B, Saladini B, Cerchiara T, Gallucci MC, et al. Vaginal inserts based on chitosan and carboxymethylcellulose complexes for local delivery of chlorhexidine: Preparation, characterization and antimicrobial activity. Int J Pharm. 2015;478(2):456–63.

Čalija B, Savic S, Krajišnik D, Daniels R, Vučen S, Markovic B, et al. PH-sensitive polyelectrolyte films derived from submicron chitosan/Eudragit® L 100-55 complexes: Physicochemical characterization and in vitro drug release. J Appl Polym Sci. 2015;132(39):1–9.

Hu Q, Wang T, Zhou M, Xue J, Luo Y. Formation of redispersible polyelectrolyte complex nanoparticles from gallic acid-chitosan conjugate and gum arabic. Int J Biol Macromol. 2016;92:812–9.

Dimer FA, Ortiz M, Pohlmann AR, Guterres SS. Inhalable resveratrol microparticles produced by vibrational atomization spray drying for treating pulmonary arterial hypertension. J Drug Deliv Sci Technol. 2015;29:152–8.

Mishra B, Mishra M, Yadav SK. Antibacterial loaded spray dried chitosan polyelectrolyte complexes as dry powder aerosol for the treatment of lung infections. Iran J Pharm Res. 2017;16(1):74–92.

Irvine J, Afrose A, Islam N. Formulation and delivery strategies of ibuprofen: challenges and opportunities. Drug Dev Ind Pharm. 2018;44(2):173–83.

Wong TW, Chan LW, Kho S Bin, Sia Heng PW. Design of controlled-release solid dosage forms of alginate and chitosan using microwave. J Control Release. 2002;84(3):99–114.

Das S, Ng KY, Ho PC. Formulation and optimization of zinc-pectinate beads for the controlled delivery of resveratrol. AAPS PharmSciTech. 2010;11(2):729–42.

Das S, Ng KY. Colon-specific delivery of resveratrol: Optimization of multi-particulate calcium-pectinate carrier. Int J Pharm. 2010;385(1–2):20–8.

Das S, Chaudhury A, Ng KY. Preparation and evaluation of zinc-pectin-chitosan composite particles for drug delivery to the colon: Role of chitosan in modifying in vitro and in vivo drug release. Int J Pharm. 2011;406(1–2):11–20.

Patel B, Patel J, Chakraborty S. Review of Patents and Application of Spray Drying in Pharmaceutical, Food and Flavor Industry. Recent Pat Drug Deliv Formul. 2014;8(1):63–78.

Pontip B, Suchada P, Sriamornsak P. Effect of formulations and spray drying process conditions on physical properties of resveratrol spray-dried emulsions. Key Eng Mater. 2019;819:246–51.

Caddeo C, Nácher A, Díez-Sales O, Merino-Sanjuán M, Fadda AM, Manconi M. Chitosan-xanthan gum microparticle-based oral tablet for colon-targeted and sustained delivery of quercetin. J Microencapsul. 2014;31(7):694–9.

Potthast H, Dressman JB, Junginger HE, Midha KK, Oeser H, Shah VP, et al. Biowaiver monographs for immediate release solid oral dosage forms: Ibuprofen. J Pharm Sci. 2005;94(10):2121–31.

Elkordya AA, Essa EA. Effects of spray drying and spray chilling on ibuprofen dissolution. Iran J Pharm Sci. 2010;6(1):3–12.

Sogias IA, Williams AC, Khutoryanskiy V V. Chitosan-based mucoadhesive tablets for oral delivery of ibuprofen. Int J Pharm. 2012;436(1–2):602–10.

Laracuente ML, Yu MH, McHugh KJ. Zero-order drug delivery: State of the art and future prospects. J Control Release. 2020;327:834–56.

Salome AC, Godswill CO, Ikechukwu IO. Kinetics and mechanisms of drug release from swellable and non swellable matrices: A review. Res J Pharm Biol Chem Sci. 2013;4(2):97–103.

Siepmann J, Peppas NA. Higuchi equation: Derivation, applications, use and misuse. Int J Pharm. 2011;418(1):6–12.

Wu IY, Bala S, Škalko-Basnet N, di Cagno MP. Interpreting non-linear drug diffusion data: Utilizing Korsmeyer-Peppas model to study drug release from liposomes. Eur J Pharm Sci. 2019;138:105026.

Zhang Y, Huo M, Zhou J, Zou A, Li W, Yao C, et al. DDSolver: An add-in program for modeling and comparison of drug dissolution profiles. AAPS J. 2010;12(3):263–71.

Diaz DA, Colgan ST, Langer CS, Bandi NT, Likar MD, Van Alstine L. Dissolution Similarity Requirements: How Similar or Dissimilar Are the Global Regulatory Expectations? AAPS J. 2016;18(1):15–22.

Ceschan NE, Bucalá V, Mateos MV, Smyth HDC, Ramírez-Rigo MV. Carrier free indomethacin microparticles for dry powder inhalation. Int J Pharm. 2018;549(1–2):169–78.

Dima C, Pətraşcu L, Cantaragiu A, Alexe P, Dima Ş. The kinetics of the swelling process and the release mechanisms of Coriandrum sativum L. essential oil from chitosan/alginate/inulin microcapsules. Food Chem. 2016;195:39–48.

Mladenovska K, Raicki RS, Janevik EI, Ristoski T, Pavlova MJ, Kavrakovski Z, et al. Colon-specific delivery of 5-aminosalicylic acid from chitosan-Ca-alginate microparticles. Int J Pharm. 2007;342(1–2):124–36.

Ding B, Li C, Pan M, Chiou Y, Li Z, Wei S, et al. Microencapsulation of xanthan gum based on palm stearin/beeswax matrix as wall system. J Food Process Eng. 2019;42(5):e13102.

Budinčić JM, Petrović L, Đekić L, Fraj J, Bučko S, Katona J, et al. Study of vitamin E microencapsulation and controlled release from chitosan/sodium lauryl ether sulfate microcapsules. Carbohydr Polym. 2021;251:116988.

Lee BJ. Pharmaceutical preformulation: physicochemical properties of excipients and powders and tablet characterization. In: Gad SC, editor, Pharmaceutical Manufacturing Handbook: Production and Processes. Hoboken, New Jersey: John Wiley & Sons, Inc.; 2008; p. 905–9.

Chomto P, Nunthanid J. Physicochemical and powder characteristics of various citrus pectins and their application for oral pharmaceutical tablets. Carbohydr Polym. 2017;174:25–31.

Crouter A, Briens L. The effect of moisture on the flowability of pharmaceutical excipients. AAPS PharmSciTech. 2014;15(1):65–74.

Elizalde-Peña EA, Zarate-Triviño DG, Nuño-Donlucas SM, Medina-Torres L, Gough JE, Sanchez IC, et al. Synthesis and characterization of a hybrid (chitosan-g-glycidyl methacrylate)-xanthan hydrogel. J Biomater Sci Polym Ed. 2013;24(12):1426–42.

Thakur A, Monga S, Wanchoo RK. Sorption and drug release studies from semi-interpenetrating polymer networks of Chitosan and Xanthan Gum. Chem Biochem Eng Q. 2014;28(1):105–15.

Rowe RC, Sheskey PJ, Quinn ME, editors. Handbook of Pharmaceutical Excipients. 6th ed. London: Pharmaceutical Press; 2009. 783 p.

Hussain A, Smith G, Khan KA, Bukhari NI, Pedge NI, Ermolina I. Solubility and dissolution rate enhancement of ibuprofen by co-milling with polymeric excipients. Eur J Pharm Sci. 2018;123:395–403.

Abioye AO, Armitage R, Kola-Mustapha AT. Thermodynamic Changes Induced by Intermolecular Interaction between Ibuprofen and Chitosan: Effect on Crystal Habit, Solubility and in Vitro Release Kinetics of Ibuprofen. Pharm Res. 2016;33(2):337–57.

Wikarsa S, Durand D, Delarbre JL, Baylac G, Bataille B. The improvement of ibuprofen dissolution rate through microparticles spray drying processed in an aqueous system. Drug Dev Ind Pharm. 2008;34(5):485–91.

Lv X, Zhang W, Liu Y, Zhao Y, Zhang J, Hou M. Hygroscopicity modulation of hydrogels based on carboxymethyl chitosan/Alginate polyelectrolyte complexes and its application as pH-sensitive delivery system. Carbohydr Polym. 2018;198:86–93.

Nath SD, Abueva C, Kim B, Lee BT. Chitosan-hyaluronic acid polyelectrolyte complex scaffold crosslinked with genipin for immobilization and controlled release of BMP-2. Carbohydr Polym. 2015;115:160–9.

Chen Y, Yan X, Zhao J, Feng H, Li P, Tong Z, et al. Preparation of the chitosan/poly(glutamic acid)/alginate polyelectrolyte complexing hydrogel and study on its drug releasing property. Carbohydr Polym. 2018;191:8–16.

Shang Q, Huang S, Zhang A, Feng J, Yang S. The binary complex of poly(PEGMA-co-MAA) hydrogel and PLGA nanoparticles as a novel oral drug delivery system for ibuprofen delivery. J Biomater Sci Polym Ed. 2017;28(16):1874–87.

Ofokansi KC, Kenechukwu FC. Formulation Development and Evaluation of Drug Release Kinetics from Colon-Targeted Ibuprofen Tablets Based on Eudragit RL 100-Chitosan Interpolyelectrolyte Complexes. ISRN Pharm. 2013;2013:1–8.

Objavljeno
2022/02/19
Rubrika
Originalni naučni rad