Metode određivanja antioksidativne aktivnosti biljnih ekstrakata in vitro
Sažetak
Biljke su bogati izvori sekundarnih metabolita koji ispoljavaju raznovrsne biološke i farmakološke efekte. Neki biljni sastojci, u prvom redu polifenolna jedinjenja, ispoljavaju značajnu in vitro antioksidativnu aktivnost, zbog čega se smatra da mogu doprineti održanju redoks ravnoteže u organizmu. Ovi potencijalni antioksidativni agensi strukturno su veoma raznovrsni deluju različitim antioksidantnim mehanizmima. S obzirom na rastuću potrebu za iznalaženjem, razvojem i razumevanjem efikasnih antioksidanasa, interesovanje za ispitivanje antioksidanasa u različitim biljnim izolatima kontinuirano raste, pa su shodno tome i razvijeni mnogi testovi. Većina dostupnih in vitro testova je pristupačna i jednostavna za izvođenje, ali zbog složenog sastava biljnih ekstrakata, različite kinetike, mehanizama i specifičnosti hemijskih reakcija na kojima se ovi testovi zasnivaju, još uvek ne postoji univerzalni parametar za procenu antioksidativne aktivnosti. U ovom radu su prikazane neke od trenutno najkorišćenijih in vitro metoda za ispitivanje i procenu antioksidativne aktivnosti biljnih ekstrakata, s naglaskom na njihove prednosti i nedostatke.
Reference
1. Niki E. Antioxidant capacity of foods for scavenging reactive oxidants and inhibition of plasma lipid oxidation induced by multiple oxidants. Food Funct. 2016;7(5):2156-68.
2. Hunyadi A. The mechanism(s) of action of antioxidants: From scavenging reactive oxygen/nitrogen species to redox signaling and the generation of bioactive secondary metabolites. Med Res Rev. 2019;39(6):2505-33.
3. Apak R. Current issues in antioxidant measurement. J Agric Food Chem. 2019;67(33):9187-202.
4. Nwachukwu ID, Sarteshnizi RA, Udenigwe CC, Aluko RE. A concise review of current in vitro chemical and cell-based antioxidant assay methods. Molecules. 2021;26(16):4865.
5. Shahidi F, Zhong Y. Measurement of antioxidant activity. J Funct Foods. 2015;18:757-81.
6. Schaich KM, Tian X, Xie J. Reprint of “Hurdles and pitfalls in measuring antioxidant efficacy: A critical evaluation of ABTS, DPPH, and ORAC assays.” J Funct Foods. 2015;18:782-96.
7. Halliwell B, Gutteridge JMC. Free Radicals in Biology and Medicine. 5th ed. Oxford: Oxford University Press; 2015. p. 77
8. Apak R, Gorinstein S, Böhm V, Schaich KM, Özyürek M, Güçlü K. IUPAC Technical Report: Methods of measurement and evaluation of natural antioxidant capacity/activity. Pure Appl Chem. 2013;85(5):957-998.
9. Amorati R, Foti MC, Valgimigli L. Antioxidant activity of essential oils. J Agric Food Chem. 2013;61(46):10835-47.
10. Sun Y, Yang C, Tsao R. Nomenclature and general classification of antioxidant activity/capacity assays. In: Apak R, Capanoglu E, Shahidi F, editors. Measurement of antioxidant activity & capacity. John Wiley & Sons, Ltd; 2018; p.1-19.
11. Magalhães LM, Segundo MA, Reis S, Lima JLFC. Methodological aspects about in vitro evaluation of antioxidant properties. Anal Chim Acta. 2008;613(1):1-19.
12. Amorati R, Valgimigli L. Advantages and limitations of common testing methods for antioxidants. Free Radic Res. 2015;49(5):633-649.
13. Haytowitz DB, Bhagwat S. USDA database for the oxygen radical absorbance capacity (ORAC) of selected foods, release 2; Nutrient Data Laboratory, Beltsville Human Nutrition Research Center (BHNRC), Agriculture Research Service (ARS), United States Department of Agriculture (USDA): Beltsville, MD; https://www.ars.usda.gov/research/publications/publication/?seqNo115=251105 (accessed Jun 16, 2023).
14. Halliwell B. Antioxidant characterization. Methodology and mechanism. Biochem Pharmacol. 1995;49.1341-8.
15. Niki E. Assessment of antioxidant capacity in vitro and in vivo. Free Rad Biol Med. 2010;49:503-15.
16. López‐Alarcón C, Denicola A. Evaluating the antioxidant capacity of natural products: a review on chemical and cellular‐based assays. Anal Chim Acta. 2013;763.1-10.
17. Apak R, Özyürek M, Güçlü K, Çapanoğlu E. Antioxidant activity/capacity measurement. 1. Classification, physicochemical principles, mechanisms, and electron transfer (ET)-based assays. J Agric Food Chem. 2016;64(5):997-1027.
18. Huang D, Ou B, Prior RL. The chemistry behind antioxidant capacity assays. J Agric Food Chem. 2005;53(6):1841-56.
19. Lamuela-Raventós RM. Folin–Ciocalteu method for the measurement of total phenolic content and antioxidant capacity. In: Apak R, Capanoglu E, Shahidi F, editors. Measurement of antioxidant activity & capacity. John Wiley & Sons, Ltd; 2018; p.107-15.
20. COMMISSION REGULATION (EEC) No 2676/90 determining Community methods for the analysis of wines. O J. 1990;74:170-1.
21. Ph. Eur. monograph 01/2008: 20814: Tannins in herbal drugs. European Pharmacopoeia 10.2. Strasbourg: Council of Europe; 2020.
22. Berker KI, Olgun FAO, Ozyurt D, Demirata B, Apak R. Modified Folin-Ciocalteu antioxidant capacity assay for measuring lipophilic antioxidants. J Agric Food Chem. 2013;61: 4783-91.
23. Apak R, Güçlü K, Özyürek M, Karademir SE. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J Agric Food Chem. 2004;52:7970-81.
24. Apak R, Özyürek M, Güçlü K, Bekdeşer B, Bener M. The CUPRAC Methods of Antioxidant Measurement for Beverages. In: Preedy V, editor. Processing and Impact on Antioxidants in Beverages. San Diego: Academic Press; 2014; p. 235-44.
25. Locatelli M, Gindro R, Travaglia F, Coïsson JD, Rinaldi M, Arlorio M. Study of the DPPH-scavenging activity: Development of a free software for the correct interpretation of data. Food Chem. 2009;114(3):889-97.
26. Sharma OP, Bhat TK. DPPH antioxidant assay revisited. Food Chem. 2009;113(4):1202–5.
27. Cuendet M, Hostettmann K, Potterat O. Iridoid glucosides with free radical scavenging properties from Fagraea blumei. Helv Chim Acta. 1997;80:1144-52.
28. Niederländer HAG, van Beek TA, Bartasiute A, Koleva II. Antioxidant activity assays on-line with liquid chromatography. J Chrom. A. 2008 Nov 14;1210(2):121–34.
29. Xiao Y, Fu F, Wei Y, Shi S, Shan Y. Online Extraction–DPPH–HPLC–DAD–QTOF-MS System for Efficient Screening and Identification of Antioxidants from Citrus aurantium L. var. amara (Rutaceae): Integrating Sample Preparation and Antioxidants Profiling. Antioxidants. 2022;11:1014.
30. Wang X, Zuo G-L, Wang C-Y, Kim HY, Lim SS, Tong S-Q. An Off-Line DPPH-GC-MS Coupling Countercurrent Chromatography Method for Screening, Identification, and Separation of Antioxidant Compounds in Essential Oil. Antioxidants. 2020;9:702.
- Autori zadržavaju autorska prava i pružaju časopisu pravo prvog objavljivanja rada i licenciraju ga "Creative Commons Attribution licencom" koja omogućava drugima da dele rad, uz uslov navođenja autorstva i izvornog objavljivanja u ovom časopisu.
- Autori mogu izraditi zasebne, ugovorne aranžmane za neekskluzivnu distribuciju članka objavljenog u časopisu (npr. postavljanje u institucionalni repozitorijum ili objavljivanje u knjizi), uz navođenje da je članak izvorno objavljen u ovom časopisu.
- Autorima je dozvoljeno i podstiču se da postave objavljeni članak onlajn (npr. u institucionalni repozitorijum ili na svoju internet stranicu) pre ili tokom postupka prijave rukopisa, s obzirom da takav postupak može voditi produktivnoj razmeni ideja i ranijoj i većoj citiranosti objavljenog članka (Vidi Efekti otvorenog pristupa).