Nusproizvodi agro-industrije kao izvor održivih sastojaka za proizvodnju funkcionalne hrane i nutraceutika

  • Nevena Ivanović Univerzitet u Beogradu – Farmaceutski fakultet, Katedra za bromatologiju
  • Tijana Ilić Univerzitet u Beogradu – Farmaceutski fakultet, Katedra za bromatologiju
  • Milica Zrnić Ćirić Univerzitet u Beogradu – Farmaceutski fakultet, Katedra za bromatologiju
  • Vanja Todorović Univerzitet u Beogradu – Farmaceutski fakultet, Katedra za bromatologiju
  • Ivana Đuričić Univerzitet u Beogradu – Farmaceutski fakultet, Katedra za bromatologiju
  • Nevena Dabetić Univerzitet u Beogradu – Farmaceutski fakultet, Katedra za bromatologiju
Ključne reči: nusproizvodi agro-industrije, biolološki aktivna jedinjenja, funkcionalna hrana, nutraceutici

Sažetak


Odlaganje otpada koji nastaje u prehrambenoj industriji jedan je od najvećih izazova u postizanju održivog razvoja. Iako su nusproizvodi koji nastaju u prehrambenoj industriji potencijalni izvor bioaktivnih jedinjenja sa dokazanim pozitivnim zdravstvenim efektima, oni se uglavnom odlažu kao organski otpad. Iskorišćenje bioaktivnih jedinjenja iz ovih nusproizvoda u cilju dobijanja proizvoda sa dodatom nutritivnom i biološkom vrednošću, kao što su funkcionalna hrana i nutraceutici, ideja je koja proizilazi iz koncepta bioekonomije i kombinuje ekološki aspekt sa ekonomski održivom proizvodnjom. Neki od glavnih nusproizvoda koji se generišu u Srbiji sa potencijalom da se iskoriste u proizvodnji proizvoda sa dodatom vrednošću su trop jabuke, trop šljive, komina grožđa, trop paradajza, uljane pogače i dr. Bioaktivna jedinjenja izolovana iz ovih otpada uključuju polifenole, peptide, vlakna, esencijalne masne kiseline, minerale, različite isparljive materije i pigmente. Ovaj članak se fokusira na najčešće otpade prehrambene industrije i potencijalnu ponovnu upotrebu ovog još uvek neiskorišćenog otpadnog materijala za proizvodnju proizvoda sa dodatom vrednošću kao što su funkcionalna hrana, nutraceutici ili aditivi.

Reference

1.          FAO. FAOSTAT Statistical Database of the United Nation Food and Agriculture Organization (FAO) statistical division. Rome.

2.          Farhat S, Zafar MU, Sheikh MA, Qasim CM, Urooj F, Fatima SS. Association of resolvin level in pregnant women with preeclampsia and metabolic syndrome. Taiwan J Obstet Gynecol. 2020;59(1):105-8.

3.          Närvänen, E., Mesiranta, N., Mattila, M., Heikkinen, A. Introduction: A Framework for Managing Food Waste. In: Närvänen, E., Mesiranta, N., Mattila, M., Heikkinen, A. (eds) Food Waste Management. Palgrave Macmillan, Cham., 2020; p. 1-24. doi: 10.1007/978-3-030-20561-4_1

4.          Persaud, N., Dagher, R. (2021). The United Nations: 2030 Sustainable Development Goals Agenda. In: Persaud, N. and Dagher, R. (Eds). The Role of Monitoring and Evaluation in the UN 2030 SDGs Agenda. Palgrave Macmillan, Cham; 2021; p. 1-41. doi:10.1007/978-3-030-70213-7_1

5.          NALED [Internet]. Upravljanje otpadom od hrane [cited 2023 May 2]. Available from: https://naled.rs/projekti-upravljanje-otpadom-od-hrane-2645.

6.          Pavlović M, Vulić M, Pavlović A. Circular Economy in Republic of Serbia and Region. Circular Economy: Global Perspective. 2020:333-52.

7.          Mirabella N, Castellani V, Sala S. Current options for the valorization of food manufacturing waste: a review. J Clean Prod. 2014;65:28-41.

8.          Ravindran R, Jaiswal AK. Exploitation of food industry waste for high-value products. Trends Biotechnol. 2016;34(1):58-69.

9.          Ben-Othman S, Jõudu I, Bhat R. Bioactives from agri-food wastes: Present insights and future challenges. Molecules. 2020;25(3):510.

10.       Socaci SA, Farcas A, Vodnar DC, Tofana M. Food wastes as valuable sources of bioactive molecules. In: Shiomi N. and Waisundara VY. (Eds.) Superfood and Functional Food—The Development of Superfoods and Their Roles as Medicine, Rijeka, Croatia: InTech. 2017; p. 75-93.

11.       Rana S, Gupta S, Rana A, Bhushan S. Functional properties, phenolic constituents and antioxidant potential of industrial apple pomace for utilization as active food ingredient. Food Sci Hum Wellness. 2015;4(4):180-7.

12.       Vulić JJ, Ćebović TN, Čanadanović-Brunet JM, Ćetković GS, Čanadanović VM, Djilas SM, et al. In vivo and in vitro antioxidant effects of beetroot pomace extracts. J Funct Foods. 2014;6:168-75.

13.       Friedman M. Chemistry and anticarcinogenic mechanisms of glycoalkaloids produced by eggplants, potatoes, and tomatoes. J Agric Food Chem. 2015;63(13):3323-37.

14.       Singh R, Langyan S, Sangwan S, Rohtagi B, Khandelwal A, Shrivastava M. Protein for human consumption from oilseed cakes: a review. Front Sustain Food Syst. 2022:101. doi:10.3389/fsufs.2022.856401;

15.       Tadić J, Jevtić J, Jančev N. Modeling of critical profitability factors: Empirical research from food industry in Serbia. Ekonomika poljoprivrede. 2019;66(2):411-22.

16.       Segatto ML, Stahl AM, Zanotti K, Zuin VG. Green and sustainable extraction of proteins from agro-industrial waste: An overview and a closer look to Latin America. Curr Opin Green SustainChem. 2022:100661. doi:10.1016/j.cogsc.2022.100661

17.       Peydayesh M, Bagnani M, Soon WL, Mezzenga R. Turning food protein waste into Sustainable Technologies. Chem Rev. 2022;123(5):2112-54.

18.       Adhikari BB, Chae M, Bressler DC. Utilization of slaughterhouse waste in value-added applications: Recent advances in the development of wood adhesives. Polymers. 2018;10(2):176.

19.       Kamal H, Le CF, Salter AM, Ali A. Extraction of protein from food waste: An overview of current status and opportunities. Compr Rev Food Sci Food Saf. 2021;20(3):2455-75.

20.       Ryder K, Bekhit AE-D, McConnell M, Carne A. Towards generation of bioactive peptides from meat industry waste proteins: Generation of peptides using commercial microbial proteases. Food Chem. 2016;208:42-50.

21.       Timorshina S, Popova E, Osmolovskiy A. Sustainable applications of animal waste proteins. Polymers. 2022;14(8):1601.

22.       Prosky L. What is dietary fibre? A new look at the definition. In: McCleary BV. and Prosky L., 1st editors. Advanced dietary fibre technology. Oxford: Blackwell Science Ltd.; 2001: p. 63-76.

23.       Ioniță-Mîndrican C-B, Ziani K, Mititelu M, Oprea E, Neacșu SM, Moroșan E, et al. Therapeutic benefits and dietary restrictions of fiber intake: A state of the art review. Nutrients. 2022;14(13):2641.

24.       Sahni P, Shere D. Utilization of fruit and vegetable pomace as functional ingredient in bakery products: A review. Asian J Dairy Food Res. 2018;37(3):202-11.

25.       Fuentes-Alventosa JM, Rodríguez-Gutiérrez G, Jaramillo-Carmona S, Espejo-Calvo JA, Rodríguez-Arcos R, Fernández-Bolaños J, et al. Effect of extraction method on chemical composition and functional characteristics of high dietary fibre powders obtained from asparagus by-products. Food Chem. 2009;113(2):665-71.

26.       Laufenberg G, Kunz B, Nystroem M. Transformation of vegetable waste into value added products: (A) the upgrading concept; (B) practical implementations. Bioresour Technol. 2003;87(2):167-98.

27.       Sharoba AM, Farrag M, El-Salam A. Utilization of some fruits and vegetables wastes as a source of dietary fibers in cake making. J Food Dairy Sci. 2013;4(9):433-53.

28.       Ignatia F, Meivira K, Kartawiria IS, Gunawan-Puteri MD, editors. Nutrient, Fiber, and Bioactive Content of Fruit Pomace, Major By-product of Juice Industry. 6th International Conference of Food, Agriculture, and Natural Resource (IC-FANRES 2021). Atlantis Press; 2022.

29.       Abbas M, Saeed F, Anjum FM, Afzaal M, Tufail T, Bashir MS, et al. Natural polyphenols: An overview. Int J Food Prop. 2017;20(8):1689-99.

30.       Akanbong EA, Senol A, Devrim AK. Phenolic Compounds for Drug Discovery: Potent Candidates for Anti-cancer, Anti-diabetes, Anti-inflammatory and Anti-microbial. Int J Vet Anim Res (IJVAR). 2021;4(3):115-21.

31.       García YD, Valles BS, Lobo AP. Phenolic and antioxidant composition of by-products from the cider industry: Apple pomace. Food Chem. 2009;117(4):731-8.

32.       Shin S-K, Cho S-J, Jung UJ, Ryu R, Choi M-S. Phlorizin supplementation attenuates obesity, inflammation, and hyperglycemia in diet-induced obese mice fed a high-fat diet. Nutrients. 2016;8(2):92.

33.       Antika LD, Lee E-J, Kim Y-H, Kang M-K, Park S-H, Kim DY, et al. Dietary phlorizin enhances osteoblastogenic bone formation through enhancing β-catenin activity via GSK-3β inhibition in a model of senile osteoporosis. J Nutr Biochem. 2017;49:42-52.

34.       Sójka M, Kołodziejczyk K, Milala J, Abadias M, Viñas I, Guyot S, et al. Composition and properties of the polyphenolic extracts obtained from industrial plum pomaces. J Funct Foods. 2015;12:168-78.

35.       Yu J, Ahmedna M. Functional components of grape pomace: their composition, biological properties and potential applications. Int J Food Sci Technol. 2013;48(2):221-37.

36.       Brodowska AJ. Raspberry pomace-composition, properties and application. Eur J Biol Res. 2017;7(2):86-96.

37.       Wu Z-G, Xu H-Y, Ma Q, Cao Y, Ma J-N, Ma C-M. Isolation, identification and quantification of unsaturated fatty acids, amides, phenolic compounds and glycoalkaloids from potato peel. Food Chem. 2012;135(4):2425-9.

38.       Melini V, Melini F, Luziatelli F, Ruzzi M. Functional ingredients from agri-food waste: Effect of inclusion thereof on phenolic compound content and bioaccessibility in bakery products. Antioxidants. 2020;9(12):1216.

39.       Kowalska H, Czajkowska K, Cichowska J, Lenart A. What's new in biopotential of fruit and vegetable by-products applied in the food processing industry. Trends Food Sci Technol. 2017;67:150-9.

40.       Rodriguez Garcia SL, Raghavan V. Green extraction techniques from fruit and vegetable waste to obtain bioactive compounds—A review. Crit Rev Food Sci Nutr. 2022;62(23):6446-66.

41.       Guerrero-Castillo P, Reyes S, Acha O, Sepulveda B, Areche C. Agro-industrial waste seeds from Peruvian Pouteria lucuma as new source of phytosterols. LWT. 2021;144:111259.

42.       Dulf FV, Andrei S, Bunea A, Socaciu C. Fatty acid and phytosterol contents of some Romanian wild and cultivated berry pomaces. Chem Pap. 2012;66:925-34.

43.       Li X, Xin Y, Mo Y, Marozik P, He T, Guo H. The bioavailability and biological activities of phytosterols as modulators of cholesterol metabolism. Molecules. 2022;27(2):523.

44.       Nartea A, Fanesi B, Pacetti D, Lenti L, Fiorini D, Lucci P, et al. Cauliflower by-products as functional ingredient in bakery foods: Fortification of pizza with glucosinolates, carotenoids and phytosterols. Curr Res Food Sci. 2023:100437. https://doi.org/10.1016/j.crfs.2023.100437" target="_blank" rel="noopener">doi:10.1016/j.crfs.2023.100437;

45.       Ras RT, Trautwein EA. Consumer purchase behaviour of foods with added phytosterols in six European countries: Data from a post-launch monitoring survey. Food Chem Toxicol. 2017;110:42-8.

46.       Asl PJ, Niazmand R, Yahyavi F. Extraction of phytosterols and tocopherols from rapeseed oil waste by supercritical CO2 plus co-solvent: A comparison with conventional solvent extraction. Heliyon. 2020;6(3):e03592.

47.       Radenkovs V, Kviesis J, Juhnevica-Radenkova K, Valdovska A, Püssa T, Klavins M, et al. Valorization of wild apple (Malus spp.) by-products as a source of essential fatty acids, tocopherols and phytosterols with antimicrobial activity. Plants. 2018;7(4):90.

48.       Milani A, Basirnejad M, Shahbazi S, Bolhassani A. Carotenoids: biochemistry, pharmacology and treatment. Br J Pharmacol. 2017;174(11):1290-324.

49.       Eggersdorfer M, Wyss A. Carotenoids in human nutrition and health. Arch Biochem Biophys. 2018;652:18-26.

50.       Saini RK, Prasad P, Lokesh V, Shang X, Shin J, Keum Y-S, et al. Carotenoids: Dietary sources, extraction, encapsulation, bioavailability, and health benefits—A review of recent advancements. Antioxidants. 2022;11(4):795.

51.       Trombino S, Cassano R, Procopio D, Di Gioia ML, Barone E. Valorization of tomato waste as a source of carotenoids. Molecules. 2021;26(16):5062.

52.       Ranveer R, Rathod N, Debaje P, Sahoo A. Extraction, purification and characterization of lycopene from tomato (Cv Vijeta) processing industry waste. EJNFS. 2020;12:83-90.

53.       Domínguez R, Gullón P, Pateiro M, Munekata PE, Zhang W, Lorenzo JM. Tomato as potential source of natural additives for meat industry. A review. Antioxidants. 2020;9(1):73.

54.       Zayan A, Bakry A, Abdul Alim T, Radwan H, Safdar W, Campelo P, et al. Novel processed cheese production using lycopene oil obtained by green-extraction technique of tomato peels waste. J Nutr Food Process. 2021;4:1-10.

55.       Eletr AA, Siliha H, Elshorbagy GA, Galal G. Evaluation of lycopene extracted from tomato processing waste as a natural antioxidant in some bakery products. Zagazig J Agric Res. 2017;44(4):1389-401.

56.       Oliveira D, Minuceli F, Ribeiro M, Marques D, Testa G, Monteiro A, et al. Production Lycopene Dye São Caetano Melon (Momordica charantia L.) for Food Application. Chem Eng Trans. 2017;57:1951-6.

57.       Niu B, Shao P, Sun P. Ultrasound-assisted emulsion electrosprayed particles for the stabilization of β-carotene and its nutritional supplement potential. Food Hydrocoll. 2020;102:105634.

58.       Pattnaik M, Pandey P, Martin GJ, Mishra HN, Ashokkumar M. Innovative technologies for extraction and microencapsulation of bioactives from plant-based food waste and their applications in functional food development. Foods. 2021;10(2):279.

59.       Górecka D, Pachołek B, Dziedzic K, Górecka M. Raspberry pomace as a potential fiber source for cookies enrichment. Acta Sci Pol Technol Aliment. 2010;9(4):451-61.

60.       Marchiani R, Bertolino M, Belviso S, Giordano M, Ghirardello D, Torri L, et al. Yogurt enrichment with grape pomace: Effect of grape cultivar on physicochemical, microbiological and sensory properties. J Food Qual. 2016;39(2):77-89.

61.       Younis K, Ahmad S. Waste utilization of apple pomace as a source of functional ingredient in buffalo meat sausage. Cogent Food Agric. 2015;1(1):1119397.

62.       Curti E, Carini E, Diantom A, Vittadini E. The use of potato fibre to improve bread physico-chemical properties during storage. Food Chem. 2016;195:64-70.

63.       Rizk EM, El-Kady AT, El-Bialy AR. Charactrization of carotenoids (lyco-red) extracted from tomato peels and its uses as natural colorants and antioxidants of ice cream. Ann Agric Sci. 2014;59(1):53-61.

64.       Šeregelj V, Tumbas Šaponjac V, Lević S, Kalušević A, Ćetković G, Čanadanović-Brunet J, et al. Application of encapsulated natural bioactive compounds from red pepper waste in yogurt. J Microencapsul. 2019;36(8):704-14.

Objavljeno
2023/06/30
Rubrika
Pregledni (Revijalni) rad