Doking studije nekih jedinjenja sa pirazolom u aktivnom mestu cikolooksigenaze-2

  • Jelena Savić Univerzitet u Beogradu – Farmaceutski fakultet, Katedra za farmaceutsku hemiju
  • Marija Anastasijević Hemofarm a.d.
  • Milkica Crevar Univerzitet u Beogradu – Farmaceutski fakultet, Katedra za farmaceutsku hemiju
  • Jasmina Brborić Univerzitet u Beogradu – Farmaceutski fakultet, Katedra za farmaceutsku hemiju
Ključne reči: ciklooksigenaza-2, molekularne interakcije, racionalno dizajniranje lekova, protein-ligand interakcije, β-hidroksi-β-arilpropanske kiseline

Sažetak


Neselektivni nesteroidni antiinflamatorni lekovi poput aspirina, ibuprofena i diklofenaka inhibiraju enzime ciklooksigenazu-1 i ciklooksigenazu-2, a selektivni inhibitori ciljaju ciklooksigenazu-2 koja je prekomerno izražena u inflamaciji, ali takođe i kod kancera, ateroskleroze, Parkinsonove i Alchajmerove bolesti. Potencijalni kardiovaskularni i hepatički neželjeni efekti selektivnih inhibitora ciklooksigenaze-2 su ograničili njihovu primenu. Razvoj selektivnih i bezbednih inhibitora ciklooksigenaze-2 ostaje veoma prioritetna oblast u otkrivanju lekova. Na osnovu strukture prethodno istraživanih novosintetisanih β-hidroksi-β-arilpropanskih kiselina dizajnirane su dve grupe jedinjenja: analozi u kojima je jedan od benzenovih prstenova zamenjen pirazolom, uz zadržavanje karboksilne grupe, i amidi β-hidroksi-β-arilpropanskih kiselina sa pirazolom. Program AutoDock Vina 1.2.0 je korišćen za dokovanje dizajniranih jedinjenja u 3D strukturu katalitičkog mesta enzima ciklooksigenaze-2, a ostvarene interakcije su upoređene sa interakcijama koje ostvaruje selektivni inhibitor celekoksib. Amidi su imali nižu energiju vezivanja od kiselina, što ih čini dobrim kandidatima za sintezu.

Reference

1.         Ahmed AU. An overview of inflammation: mechanism and consequences. Front Biol. 2011;6(4):274-81.

2.          Tsalamandris S, Antonopoulos AS, Oikonomou E, Papamikroulis GA, Vogiatzi G, Papaioannou S, et al. The role of inflammation in diabetes: current concepts and future perspectives. Eur Cardiol. 2019;14(1):50-9.

3.          Tansey MG, Wallings RL, Houser MC, Herrick MK, Keating C, Joers V. Inflammation and immune dysfunction in Parkinson`s disease. Nat Rev Immunol. 2022;22(11): 657-73.

4.          Kinney JW, Bemiller SM, Murtishaw AS, Leisgang AM, Salazar AM, Lamb BT. Inflammation as a central mechanism in Alzheimer's disease. Alzheimers Dement: Transl Res Clin Interv. 2018;4:575-90.

5.          Moriya J. Critical roles of inflammation in atherosclerosis. J Cardiol. 2019;73(1):22-7.

6.          Zhao H, Wu L, Yan G. Chen Y, Zhou M, Wu Y, et al. Inflammation and tumor progression: signaling pathways and targeted intervention. Sig Transduct Target Ther. 2021;6:263-309.

7.          Deshmukh SK, Srivastava SK, Poosarla T, Dyess DL, Holliday NP, Singh AP, et al. Inflammation, immunosuppressive microenvironment and breast cancer: opportunities for cancer prevention and therapy. Ann Transl Med. 2019;7(20):593-607.

8.          Lim B, Woodward WA, Wang X, Reuben JM, Ueno NT. Inflammatory breast cancer biology: the tumour microenvironment is key. Nat Rev Cancer. 2018; 18(8):485-99.

9.          Janakiram NB, Rao CV. The role of inflammation in colon cancer. Adv Exp Med Biol. 2014;816:25-52.

10.       Wang D, DuBois RN. The role of anti-inflammatory drugs in colorectal cancer. Annu Rev Med. 2013;14(64):131-44.

11.       Vane JR, Bakhle YS, Botting RM. Cyclooxygenases 1 and 2. Annu Rev Pharmacol Toxicol. 1998;38(1):97-120.

12.       Roche VF, Williams DA, Lemke TL, Zito SW. Foye's Principles of Medicinal Chemistry. 8th ed. Philadelphia: Lippincott Williams & Wilkins; 2019.

13.       Capone ML, Tacconelli S, Sciulli MG, Patrignani P. Clinical pharmacology of selective COX-2 inhibitors. Int J Immunopathol Pharmacol. 2003;16(2 Suppl):49-58.

14.       Guedes IA, de Magalhães CS, Dardenne LE. Receptor–ligand molecular docking. Biophys Rev. 2014;6:75-87.

15.       Jakhar R, Dangi M, Khichi A, Chhillar AK. Relevance of molecular docking studies in drug designing. Curr Bioinform. 2020;15(4):270-8.

16.       Ferreira LG, Santos dos RN, Oliva G, Andricopulo A. Molecular docking and structure-based drug design strategies. Molecules. 2015;20:13384-421.

17.       Savić J, Dilber S, Marković B, Milenković M, Vladimirov S, Juranić I. Docking studies and α-substitution effects on the anti-inflammatory activity of β-hydroxy-β-arylpropanoic acids. Molecules. 2011;16(8):6645-55.

18.       Savić J, Dilber S, Milenković M, Kotur-Stevuljević J, Marković B, Vladimirov S, Brborić J. Docking studies, synthesis and biological evaluation of β-aryl-β-hydroxy propanoic acids for anti-inflammatory activity. Med Chem. 2017;13(2): 186-96.

19.       Eberhardt J, Santos-Martins D, Tillack AF. Forli S. AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings. J Chem Inform Model. 2021;61(8):3891-8.

20.       Trott O, Olson, AJ. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comp Chem. 210;31(2):455-61.

21.       The PyMOL Molecular Graphics System. Version 2.0. Schrödinger, LLC.

22.       ChemOffice Version 7.0 ultra. Cambridge Soft Corporation, Software Publishers Association, 1730 M Street, NW, Suite 700, Washington D.C.20036 (2002), 452–1600 USA.

23.       Brune K, Hinz B. Selective cyclooxygenase‐2 inhibitors: similarities and differences. Scand. J Rheumatol. 2004;33(1):1-6.

24.       Kurumbail RG, Stevens AM, Gierse JK, McDonald JJ, Stegeman RA, Gildehaus D et al. Structural basis for selective inhibition of cyclooxygenase-2 by anti-inflammatory agents. Nature. 1996;384:644-48.

25.       Correa CM, de Paula AF, da Silva GM, Sant'Anna CM, Fraga CA, Barreiro EJ. The molecular basis of COX-2 versus COX-1 selectivity of lumiracoxib by molecular docking studies. Lett Drug Des Discov. 2007;4(6):422-5.

26.       Buvanendran A, Barkin R. Lumiracoxib. Drug Today. 2007;43(3):137-47.

Objavljeno
2023/06/30
Rubrika
Originalni naučni rad