Nosači lekovitih supstanci skloni samoorganizovanju: trenutni izazovi u karakterizaciji i izgledi za budućnost

  • Ivana Pantelić Univerzitet u Beogradu – Farmaceutski fakultet, Katedra za farmaceutsku tehnologiju i kozmetologiju
  • Tanja Ilić Univerzitet u Beogradu – Farmaceutski fakultet, Katedra za farmaceutsku tehnologiju i kozmetologiju
  • Ines Nikolić Univerzitet u Beogradu – Farmaceutski fakultet, Katedra za farmaceutsku tehnologiju i kozmetologiju; Biopharmaceutical Sciences, University of Geneva
  • Snežana Savić Univerzitet u Beogradu – Farmaceutski fakultet, Katedra za farmaceutsku tehnologiju i kozmetologiju
Ključne reči: materijali skloni samoorganizovanju, metode pripreme nosača, ispitivanje morfologije, tehnike procene veličine nosača, metoda sa dijaliznim vrećicama

Sažetak


Pregled publikacija objavljenih poslednjih godina ukazuje na interesovanje za tzv. nosače sklone samoorganizovanju, kao i njihov potencijal za isporuku lekovitih supstanci različitim putevima primene. U ovom kontekstu, samoorganizacija označava proces relativno spontanog obrazovanja visoko uređenih agregata (koji ponekad zahteva specifične uslove – npr., pH, temperaturu, jonsku jačinu), zahvaljujući interakcijama različite prirode. Ovaj proces, karakterističan za mnoge supstance prirodnog porekla (određene polisaharide, proteine, lipide), poslužio je kao inspiracija istraživačima da osmisle i sintetišu inovativne materijale sklone samoorganizovanju, ili ispitaju kombinacije postojećih materijala. Ovaj rad pruža pregled najčešće ispitivanih materijala, odnosno nosača dobijenih samoorganizovanjem, koji često pripadaju sferi farmaceutske nanotehnologije. Nosači skloni samoorganizovanju mogu unaprediti stabilnost, efikasnost inkapsulacije i/ili kontrolisanu isporuku lekovitih supstanci. Ipak, raznolikost geometrija dobijenih nosača (sfere, poliedri, elipse, diskovi, porozne strukture, itd.) predstavlja značajan izazov za karakterizaciju, često zahtevajući primenu više komplementarnih tehnika, naročito za valjanu evaluaciju veličine i morfologije dobijenih nosača. Diskutovane su najčešće korišćene tehnike fizičko-hemijske i biofarmaceutske karakterizacije, uz isticanje njihovih prednosti i nedostataka. Na kraju, dat je kritički osvrt o izgledima za buduću primenu nosača lekovitih supstanci sklonih samoorganizovanju.

Reference

Taylor K, Aulton M, editors. Aulton’s Pharmaceutics - The Design and Manufacture of Medicines, 6th edition. London: Elsevier; 2022; 394 p.

Motlaq F, Gedda L, Edwards K, Doutch J, Bergström LM. Spontaneous Formation of Ultrasmall Unilamellar Vesicles in Mixtures of an Amphiphilic Drug and a Phospholipid. Langmuir. 2023;39(32):11337-44.

Northrop B, Zheng Y-R, Chi K-W, Stang P. Self-Organization in Coordination-Driven Self-Assembly. Acc Chem Res. 2009;42(10):1554–63.

Kumar P, Pillay V, Modi G, Choonara YE, du Toit LC, Naidoo D. Self-assembling peptides: implications for patenting in drug delivery and tissue engineering. Recent Pat Drug Deliv Formul. 2011;5(1):24-51.

Qin Z, Li M, Cheng J, Huang Z, Ai G, Qu C, et al. Self-Assembled Nanoparticles Combining Berberine and Sodium Taurocholate for Enhanced Anti-Hyperuricemia Effect. Int J Nanomedicine. 2023;18:4101-20.

Tanaka H, Dotera T, Hyde S. Programmable Self-Assembly of Nanoplates into Bicontinuous Nanostructures. ACS Nano. 2023;17(16): 15371-8.

PubMed [Internet] [cited 2023 Sep 20]. Available from: https://pubmed.ncbi.nlm.nih.gov/.

Espacenet [Internet] [cited 2023 Sep 20]. Available from: https://worldwide.espacenet.com/.

Rani V, Verma R, Kumar K, Chawla R. pH-influenced self-assembled stealth nanoscaffolds encapsulating memantine for treatment of Alzheimer's disease. J Biosci. 2023;48:31.

Song Z, Chen X, You X, Huang K, Dhinakar A, Gu Z, Wu J. Self-assembly of peptide amphiphiles for drug delivery: the role of peptide primary and secondary structures. Biomater Sci. 2017;5(12):2369-80.

Hendricks MP, Sato K, Palmer LC, Stupp SI. Supramolecular Assembly of Peptide Amphiphiles. Acc Chem Res. 2017;50(10):2440-8.

Liang J, Li L, Tian H, Wang Z, Liu G, Duan X, et al. Drug Repurposing-Based Brain-Targeting Self-Assembly Nanoplatform Using Enhanced Ferroptosis against Glioblastoma. Small. 2023;e2303073. doi: 10.1002/smll.202303073.

Müller RH, Radtke M, Wissing SA. Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev. 2002;54(1):S131-55.

Gledovic A, Janosevic Lezaic A, Nikolic I, Tasic-Kostov M, Antic-Stankovic J, Krstonosic V, et al. Polyglycerol Ester-Based Low Energy Nanoemulsions with Red Raspberry Seed Oil and Fruit Extracts: Formulation Development toward Effective In Vitro/In Vivo Bioperformance. Nanomaterials. 2021;11(1):217.

Grijalvo S, Rodriguez-Abreu C. Polymer nanoparticles from low-energy nanoemulsions for biomedical applications. Beilstein J Nanotechnol. 2023;14:339-50.

Nikolic I, Mitsou E, Pantelic I, Randjelovic D, Markovic B, Papadimitriou V, et al. Microstructure and biopharmaceutical performances of curcumin-loaded low-energy nanoemulsions containing eucalyptol and pinene: Terpenes' role overcome penetration enhancement effect? Eur J Pharm Sci. 2020;142:105135.

Chapa-Villarreal F, Miller M, Rodriguez-Cruz J, Pérez-Carlos D, Peppas N. Self-assembled block copolymer biomaterials for oral delivery of protein therapeutics. Rev Biomaterials. 2023;300:122191.

Chellathurai M, Yong C, Sofian Z, Sahudin S, Hasim N, Mahmood S. Self-assembled chitosan-insulin oral nanoparticles - A critical perspective review. Rev Int J Biol Macromol. 2023;243:125125.

Xia D, Hu C, Hou Y. Regorafenib loaded self-assembled lipid-based nanocarrier for colorectal cancer treatment via lymphatic absorption. Eur J Pharm Biopharm. 2023;185:165-76.

Baral B, Panigrahi B, Kar A, Tulsiyan KD, Suryakant U, Mandal D, Subudhi U. Peptide nanostructures-based delivery of DNA nanomaterial therapeutics for regulating gene expression. Mol Ther Nucleic Acids. 2023;33:493-510.

Cheng J, Zhao H, Li B, Zhang H, Zhao Q, Fu S, et al. Photosensitive pro-drug nanoassemblies harboring a chemotherapeutic dormancy function potentiates cancer immunotherapy. Acta Pharm Sin B. 2023;13(2):879-96.

Meng R, Hao S, Sun C, Hou Z, Hou Y, Wang L, et al. Reverse-QTY code design of active human serum albumin self-assembled amphiphilic nanoparticles for effective anti-tumor drug doxorubicin release in mice. Proc Natl Acad Sci. 2023;120(21):e2220173120.

Zhang Z, Ma L, Jiang S, Liu Z, Huang J, Chen L, et al. A self-assembled nanocarrier loading teniposide improves the oral delivery and drug concentration in tumor. J Control Release. 2013;166(1):30-7.

Kansız S, Elçin YM. Advanced liposome and polymersome-based drug delivery systems: Considerations for physicochemical properties, targeting strategies and stimuli-sensitive approaches. Rev Adv Colloid Interface Sci. 2023;317:102930.

Gomes A, Sobral PJDA. Plant Protein-Based Delivery Systems: An Emerging Approach for Increasing the Efficacy of Lipophilic Bioactive Compounds. Molecules. 2021;27(1):60.

Llanos MF, Gómara MJ, Haro I, López ES. Peptide Amphiphiles for Pharmaceutical Applications. Curr Med Chem. 2023. doi: 10.2174/0929867330666230408203820.

Staii C. Conformational Changes in Surface-Immobilized Proteins Measured Using Combined Atomic Force and Fluorescence Microscopy. Molecules. 2023;28(12):4632.

Duan S, Xia Y, Tian X, Cui J, Zhang X, Yang Q, et al. A multi-bioresponsive self-assembled nano drug delivery system based on hyaluronic acid and geraniol against liver cancer. Carbohydr Polym. 2023;310:120695.

Han L, Zhai R, Hu B, Yang J, Li Y, Xu Z, et al. Effects of Octenyl-Succinylated Chitosan-Whey Protein Isolated on Emulsion Properties, Astaxanthin Solubility, Stability, and Bioaccessibility. Foods. 2023;12(15):2898.

Ilić T, Đoković JB, Nikolić I, Mitrović JR, Pantelić I, Savić SD, Savić MM. Parenteral Lipid-Based Nanoparticles for CNS Disorders: Integrating Various Facets of Preclinical Evaluation towards More Effective Clinical Translation. Pharmaceutics. 2023;15(2):443.

Yuan Y, Wang Z, Su S, Mi Y, Li Q, Dong F, et al. Redox-sensitive self-assembled micelles based on low molecular weight chitosan-lipoic acid conjugates for the delivery of doxorubicin: Effect of substitution degree of lipoic acid. Int J Biol Macromol. 2023;247:125849.

Jiménez-Sánchez M, Pérez-Morales R, Goycoolea FM, Mueller M, Praznik W, Loeppert R, et al. Self-assembled high molecular weight inulin nanoparticles: Enzymatic synthesis, physicochemical and biological properties. Carbohydr Polym. 2019;215:160-9.

Lee JS, Park E, Oh H, Choi WI, Koo H. Levan nanoparticles with intrinsic CD44-targeting ability for tumor-targeted drug delivery. Int J Biol Macromol. 2023;234:123634.

Pantelić I, Lukić M, Gojgić-Cvijović G, Jakovljević D, Nikolić I, Lunter DJ, et al. Bacillus licheniformis levan as a functional biopolymer in topical drug dosage forms: From basic colloidal considerations to actual pharmaceutical application. Eur J Pharm Sci. 2020;142:105109.

Lee J-H, Yang S-B, Lee J-H, Lim H, Lee S, Kang T-B, et al. Doxorubicin covalently conjugated heparin displays anti-cancer activity as a self-assembled nanoparticle with a low-anticoagulant effect. Carbohydr Polym. 2023;314:120930.

Farag MM, El-Sebaie W, Basalious EB, El-Gazayerly ON. Darifenacin Self-assembled Liquid Crystal Cubic Nanoparticles: a Sustained Release Approach for an Overnight Control of Overactive Bladder. AAPS PharmSciTech. 2023;24(5):120.

Zhao T, Zhou M, Wu R, Wang H, Zouboulis C, Zhu M, Lee M. Dendrimer-conjugated isotretinoin for controlled transdermal drug delivery. J Nanobiotechnology. 2023;21(1):285.

Hu Q, Zhang F, Wei Y, Liu J, Nie Y, Xie J, et al. Drug-Embedded Nanovesicles Assembled from Peptide-Decorated Hyaluronic Acid for Rheumatoid Arthritis Synergistic Therapy. Biomacromolecules. 2023;24(8):3532-44.

Ren X, Ren J, Li Y, Yuan S, Wang G. Preparation of caffeic acid grafted chitosan self-assembled micelles to enhance oral bioavailability and antibacterial activity of quercetin. Front Vet Sci. 2023;10:1218025.

Huang YC, Zeng YJ, Lin YW, Tai HC, Don TM. In Situ Encapsulation of Camptothecin by Self-Assembly of Poly(acrylic acid)-b-Poly(N-Isopropylacrylamide) and Chitosan for Controlled Drug Delivery. Polymers. 2023;15(11):2463.

Mukhopadhyay P, Sarkar K, Chakraborty M, Bhattacharya S, Mishra R, Kundu P. Oral insulin delivery by self-assembled chitosan nanoparticles: In vitro and in vivo studies in diabetic animal model. Mater Sci Eng C. 2013;33(1):376-82.

Sezer AD, Sarılmışer HK, Rayaman E, Çevikbaş A, Öner ET, Akbuğa J. Development and characterization of vancomycin-loaded levan-based microparticular system for drug delivery. Pharm Dev Technol. 2017;22(5):627-34.

Hamley I. Lipopeptides: from self-assembly to bioactivity. Chem Commun. 2015;51:8574-83.

Aydin F, Chu X, Uppaladadium G, Devore D, Goyal R, Murthy NS, et al. Self-Assembly and Critical Aggregation Concentration Measurements of ABA Triblock Copolymers with Varying B Block Types: Model Development, Prediction, and Validation. J Phys Chem B. 2016;120(15):3666–76.

Yue Q, Luo Z, Li X, Fielding LA. 3D printable, thermo-responsive, self-healing, graphene oxide containing self-assembled hydrogels formed from block copolymer wormlike micelles. Soft Matter. 2023;19(34):6513-24.

Yuan Y, Wang Z, Su S, Lin C, Mi Y, Tan W, Guo Z. Self-assembled low molecular weight chitosan-based cationic micelle for improved water solubility, stability and sustained release of α-tocopherol. Food Chem. 2023;429:136886.

Sze-Tao K, Sathe S. Walnuts (Juglans regia L): proximate composition, protein solubility, protein amino acid composition and protein in vitro digestibility. J Sci Food Agric. 2000;80(9):1393-401.

Lv J, Zhou X, Wang W, Cheng Y, Wang F. Solubilization mechanism of self-assembled walnut protein nanoparticles and curcumin encapsulation. J Sci Food Agric. 2023;103(10):4908-18.

Greenfield, N. Using circular dichroism spectra to estimate protein secondary structure. Nat Protoc. 2006;1:2876–90.

Boott C, Gwyther J, Harniman R, Hayward D, Manners I. Scalable and uniform 1D nanoparticles by synchronous polymerization, crystallization and self-assembly. Nat Chem. 2017;9:785–92.

He Y, Grandi D, Chandradoss S, LuTheryn G, Cidonio G, Nunes Bastos R, et al. Rapid Production of Nanoscale Liposomes Using a 3D-Printed Reactor-In-A-Centrifuge: Formulation, Characterisation, and Super-Resolution Imaging. Micromachines. 2023;14(9):1763.

Bryant S, Elbourne A, Greaves T, Bryant G. Phytantriol phase behaviour in choline chloride urea and water mixtures. J Mater Chem B. 2023;11(29):6868-80.

Filipe V, Hawe A, Jiskoot W. Critical Evaluation of Nanoparticle Tracking Analysis (NTA) by NanoSight for the Measurement of Nanoparticles and Protein Aggregates. Pharm Res. 2010;27:796–810.

Sivakumaran M, Platt M. Tunable resistive pulse sensing: potential applications in nanomedicine. Nanomedicine. 2016;11(16):2197-214.

Jansook P, Pichayakorn W, Muankaew C, Loftsson T. Cyclodextrin–poloxamer aggregates as nanocarriers in eye drop formulations: dexamethasone and amphotericin B. Drug Dev Ind Pharm. 2016;42(9):1446-54.

Koch K, Dew B, Corcoran T, Przybycien T, Tilton R, Garoff S. Surface Tension Gradient Driven Spreading on Aqueous Mucin Solutions: A Possible Route to Enhanced Pulmonary Drug Delivery. Mol Pharmaceutics. 2011;8(2):387–94.

Alshamrani M, Ayon NJ, Alsalhi A, Akinjole O. Self-Assembled Nanomicellar Formulation of Docetaxel as a Potential Breast Cancer Chemotherapeutic System. Life. 2022;12(4):485.

Sun T, Han H, Hudalla G, Wen Y, Pompano R, Collier J. Thermal stability of self-assembled peptide vaccine materials. Acta Biomater. 2016;30:62-71.

Rarokar NR, Khedekar PB. Formulation and evaluation of docetaxel trihydrate loaded self-assembled nanocarriers for treatment of HER2 positive breast cancer. J Drug Deliv Ther. 2017;7(6):1-6.

ICH Q1A (R2) Stability testing of new drug substances and drug products - Scientific guideline [Internet] [cited 2023 Sep 10]. Available from: https://www.ema.europa.eu/en/ich-q1a-r2-stability-testing-new-drug-substances-drug-products-scientific-guideline.

Xie J, Wang C-H. Self-Assembled Biodegradable Nanoparticles Developed by Direct Dialysis for the Delivery of Paclitaxel. Pharm Res. 2005;22(12):2079-90.

Marino A, Battaglini M, Carmignani A, Pignatelli F, De Pasquale D, Tricinci O, Ciofani G. Magnetic self-assembly of 3D multicellular microscaffolds: A biomimetic brain tumor-on-a-chip for drug delivery and selectivity testing. APL Bioeng. 2023;7(3):036103.

Miller M, Chapa-Villarreal F, Oldenkamp H, Elder M, Venkataraman A, Peppas N. Stimuli-responsive self-assembled polymer nanoparticles for the oral delivery of antibodies. J Control Release. 2023;361:246-59.

Sarfraz M, Anjum F, Zahra D, Maqsood A, Ashfaq U. Recent Updates on Peptide Molecules in Drug and Vaccine Development. Curr Pharm Des. 2023. doi: 10.2174/1381612829666230717121632.

Chen YK, Simon IA, Maslov I, Oyarce-Pino IE, Kulkarni K, Hopper D, et al. A switch in N-terminal capping of β-peptides creates novel self-assembled nanoparticles. RSC Adv. 2023;13(42):29401-29407.

Hribernik N, Vargová D, Dal Colle MCS, Lim JH, Fittolani G, Yu Y, et al. Controlling the assembly of cellulose-based oligosaccharides through sequence modifications. Angew Chem Int Ed Engl. 2023:e202310357. doi: 10.1002/anie.202310357.

Dias AMGC, Moreira IP, Lychko I, Lopes Soares C, Nurrito A, Moura Barbosa AJ, et al. Hierarchical self-assembly of a reflectin-derived peptide. Front Chem. 2023;11:1267563.

Objavljeno
2023/10/27
Rubrika
Pregledni (Revijalni) rad