Uporedno spektrofotometrijsko određivanje 3-hidroksiflavona bazirano na kompleksima cinka i aluminijuma i njihovi antioksidatni profili

  • Leposava Pavun Univerzitet u Beogradu – Farmaceutski fakultet, Katedra za Katedra za fizičku hemiju i instrumentalne metode
  • Aleksandra Janošević Ležaić Univerzitet u Beogradu – Farmaceutski fakultet, Katedra za fizičku hemiju i instrumentalne metode
  • Snežana Uskoković-Marković Univerzitet u Beogradu – Farmaceutski fakultet, Katedra za analitičku hemiju
Ključne reči: spektrofotometrija, 3-hidroksiflavon, cink kompleks, aluminijum kompleks, antioksidativni kapacitet

Sažetak


Flavonoidi, jedinjenja biljnog porekla, vekovima su bili veoma važne aktivne komponente u tradicionalnoj medicini. Veliki broj njihovih potencijalnih ili već potvrđenih efekata uključuje antivirusna, antimutagena, antiinflamatorna, antibakterijska, vazodilatatorna i antikancerogena svojstva. Promovisanje biljne ishrane, uz isticanje koristi konzumiranja flavonoida, u današnje vreme postalo je sve privlačnije. 3-Hidroksiflavon (3HF) je strukturni stub svih flavonola, važne klase flavonoida. Iako sam 3HF ne postoji u biljkama per se, on ispoljava mnoge svoje efekte zahvaljujući osobini da sprečava stvaranja slobodnih radikala. Ovaj rad je fokusiran na karakterizaciju kompleksa 3HF sa jonima cinka(II) i aluminijuma(III) (Zn-3HF i Al-3HF, respektivno). Izvršena je karakterizacija ovih kompleksa i razvijena brza i pristupačna metoda za spektrofotometrijsko određivanje 3HF, na osnovu formiranja kompleksa Zn-3HF i Al-3HF, sa veoma niskim vrednostima LOD i LOQ. Mala prednost je data modifikaciji sa Al3+ nа pH 4,91 zbog izuzetno niskih vrednosti LOD i LOQ, 1,83×10-7 mol L-1, оdnosno 5,50×10-7 mol L-1, kao i visokog koeficijenta korelacije, R=0,99986. Pored toga, antioksidativni kapaciteti sintetizovanih kompleksa Zn-3HF i Al-3HF, kao i samog 3HF, ispitani su DPPH i ABTS testovima i doveli su Zn-3HF kompleks u prvi plan za dalja ispitivanja kao potencijalnog antioksidativnog agensa.

Reference

Panche AN, Diwan AD, Chandra SR. Flavonoids: an overview. J Nutr Sci. 2016;5:e47.

Tungmunnithum D, Thongboonyou A, Pholboon A, Yangsabai A. Flavonoids and Other Phenolic Compounds from Medicinal Plants for Pharmaceutical and Medical Aspects: An Overview. Medicines (Basel). 2018;5(3):93.

Havsteen B. The biochemistry and medical significance of the flavonoids. Pharmacol Ther. 2002;96:67–202.

Kasprzak M, Erxleben A, Ochocki J. Properties and applications of flavonoid metal complexes. RSC Adv. 2015;5:45853-77.

Feng W, Lie L, Xiang-Ping L, Ya-Xin Y, Gui-Lan Z, Wen-Ju C. All-optical switchings of 3-hydroxyflavone in different solvents. Chinese Phys B. 2008;17:1461-66.

Guharay J, Chaudhuri R, Chakrabarti A, Sengupta PK. Excited state proton transfer fluorescence of 3-hydroxyflavone in model membranes. Spectrochim Acta A: Mol Biomol Spectr. 1997;53(3):457–462.

Chaudhuri S, Banerjee A, Basu K, Sengupta B, Sengupta PK. Interaction of flavonoids with red blood cell membrane lipids and proteins: Antioxidant and antihemolytic effects. Int J Biol Macromolec. 2007;41:42–48.

Butun B, Topcu G, Ozturk T. Recent Advances on 3-Hydroxyflavone Derivatives: Structures and Properties. Mini Rev Med Chem. 2018;18(2):98-103.

Gunduz S, Goren AC, Ozturk T. Facile Syntheses of 3-Hydroxyflavones. Org Lett. 2012;14(6):1576–1579.

Cornard JP, Dangleterre L, Lapouge C. DFT and TD-DFT investigation and spectroscopic characterization of the molecular and electronic structure of the Zn(II)-3- hydroxyflavone complex. Chem Phys Lett. 2006;419:304–308.

Protti S, Mezzetti A, Lapouge C, Cornard JP. Photochemistry of metal complexes of 3-hydroxyflavone: towards a better understanding of the influence of solar light on the metal–soil organic matter interactions. Photochem Photobiol Sci. 2008;7:109-119.

Lau AJ, Chang TKH. 3-Hydroxyflavone and structural analogs differentially activate pregnane X receptor: Implication for inflammatory bowel disease. Pharmacol Res. 2015;100:64-72.

Ko-Hsiu L, Pei-Ni C, Yi-Hsien H, Chin-Yin L, Fu-Yuan C, Peng-Chou C, et al. 3-Hydroxyflavone inhibits human osteosarcoma U2OS and 143B cells metastasis by affecting EMT and repressing u-PA/MMP-2 via FAK-Src to MEK/ERK and RhoA/MLC2 pathways and reduces 143B tumor growth in vivo. Food Chem Tox. 2016;97:177-186.

Sasaki N, Toda T, Kaneko T, Baba N, Matsuo M. Flavonoids suppress the cytotoxicity of linoleic acid hydroperoxide toward PC12 cells. Biol Pharm Bull. 2002;25.8:1093-1096.

Matsuo M, Sasaki N, Saga K, Kaneko T. Cytotoxicity of flavonoids toward cultured normal human cells. Biol Pharm Bull. 2005;28:253-259.

Sengupta B, Sahihi M, Dehkhodaei M, Kelly D, Arany I. Differential roles of 3-Hydroxyflavone and 7-Hydroxyflavone against nicotine-induced oxidative stress in rat renal proximal tubule cells. PLoS ONE. 2017;12(6):e0179777.

Russo M, Orel V, Štacko P, Šranková M, Muchová L, Vítek L, Klán P. Structure–Photoreactivity Relationship of 3-Hydroxyflavone-Based CO-Releasing Molecules. J Org Chem. 2022;87(7):4750–4763.

Vijayaraghavan K, Pillai SI, Subramanian SP. Design, synthesis, and characterization of zinc-3 hydroxy flavone, a novel zinc metallo complex for treating experimental diabetes in rats. Eur J Pharmacol. 2012;680(1–3):122-129.

Boudet AC, Cornard JP, Merlin JC. Conformational and spectroscopic investigation of 3-hydroxyflavone–aluminium chelates. Spectrochim Acta A: Mol Biomol Spectr. 2000;56:829-39.

Perrin DD, Dempsey B. Buffers for pH and Metal Ion Contro. London: Chapman and Hall; 1974.

Kuntić V, Malešev D. Investigation of metal–flavonoid chelates and determination of flavonoids via metal–flavonoid complexing reactions. J Serb Chem Soc. 2007;72(10):921-939.

Irving H, Pierce T. Observations on Job's method of continuous variations and its extension to two-phase systems. J Chem Soc. 1959;0:2565–74.

Miller JN, Miller JC. Statistics and Chemometrics for Analytical Chemistry, 6th ed. Harlow, England: Prentice Hall/Pearson; 2010.

Validation of analytical procedures: Methodology. ICH Guideline Q2B. Federal Register 62. 1997: No 96; pp. 27463-27467.

Uskoković-Marković S, Milenković M, Pavun L. Zinc-quercetin complex – from determination to bioactivity. Acta Agricult Serb. 2020;25:113–120.

Pavun L, Janošević Ležaić A, Uskoković-Marković S. Spectrophotometric determination of morin in strawberries and their antioxidant activity. Arch Pharm. 2021;71:1–17.

Pavun L, Janošević-Ležaić A, Tanasković S, Ušjak D, Milenković M, Uskoković-Marković S. Antioxidant Capacity and Antimicrobial Effects of Zinc Complexes of Flavonoids – Does Synergism Exist?. Mac J Chem Chem Eng. 2021;40(2):231–239.

Hsu CF, Peng H, Basle C, Travas‐Sejdic J, Kilmartin PA. ABTS•+ scavenging activity of polypyrrole, polyaniline and poly(3,4‐ethylenedioxythiophene). Polym Int. 2011;60:69-77.

AL-Kindy SMZ, Al-Hinai KH, Suliman FEO, Al-Lawati HJ, Pillay A. Development of a selective fluorimetric technique for rapid trace determination of zinc using 3-hydroxyflavone. Arab J Chem. 2011;4:147–152.

Kukic-Markovic J. Methods for the determination of antioxidant activity of plant extracts in vitro. Arch Pharm. 2023;73:318–335.

Malacaria L, Torre CL, Furia E, Fazio A, Caroleo MC, Cione E, et al. Aluminum(III), iron(III) and copper(II) complexes of luteolin: Stability, antioxidant, and anti-inflammatory properties. J Mol Liq. 2022;345:117895.

Moravcová M, Lomozová Z, Kučera R, Mladěnka P. 3-Hydroxyflavone is a mildly active and safe cobalt chelator while cobalt markedly enhances baicalein toxicity toward erythrocytes. RSC Adv. 2023;13(42):29242-29251.

Objavljeno
2024/02/22
Rubrika
Originalni naučni rad