Effect of alloying elements on the stacking fault energies of dilute Al-based alloys

  • Qiannan Gao Chengde Petroleum College
  • Yujian Liu Chengde Petroleum College
  • Huili Zhang Chengde Petroleum College
  • Ruichen Yang Chengde Petroleum College
  • Xiaopi Geng Chengde Petroleum College
  • Yonghui Gao Chengde Petroleum College
  • Jiong Wang Central South University
  • Shunli Shang Pennsylvania State University
  • Yong Du Central South University
  • Zikui Liu Pennsylvania State University

Abstract


A systematic study of the stacking fault energy (γSF) for the dilute Al-based alloys (Al23X, Al47X and Al71X, where X = Al, Ag, Be, Ca, Cd, Co, Cu, Cr, Fe, Ga, Ge, Hf, In, K, La, Li, Mn, Mg, Ni, Na, Pb, Sc, Sn, Sr, Si, Ti, V, Zn, and Zr) has been performed by means of first-principles calculations. Alias shear deformation is adopted in the present investigations. The presently calculated γSF for Al is in favorable accordance with experimental and other theoretical data. For the targeted elements, the calculations indicate that Na, Si, K, Ca, Sc, Ga, Ge, Sr, Zr, In, Sn, La, Hf, and Pb in any concentration we considered decrease the γSF of Al, while Ag, Be, Cd, Co, Cu, Cr, Fe, Li, Mn, Mg, Ni, Ti, V, and Zn increase the γSF of Al, when the concentration of alloying elements is 1.39 at. % in the system. With increasing concentration of alloying elements, Li, Mg, V, Ti, and Cd would turn from increasing the γSF of Al to decrease it based on present investigations. Among the alloying elements, which decrease the γSF of Al, La decreases the γSF most significantly. It is also found that the γSF of Al-X generally decreases with the increase of equilibrium volume. The finding obtained in the present work provides an insight into the design of Al based alloys.

References

P.S. Branicio, J.Y. Zhang, D.J. Srolovitz, Phys. Rev. B, 88 (2013) 064104.

Y. Qi, R.K. Mishra, Phys. Rev. B, 75 (2007) 224105.

Z.K. Liu, J. Phys.: Condens. Matter, 24 (2012) 505403.

A.S. Argon, W.C. Moffatt, Acta Metall., 29 (1981) 293-299.

S. Ma, L. Carroll, T.M. Pollock, Acta Mater. 55 (2007) 5802-5812.

M. Chandranand, S.K. Sondhi, J. Appl. Phys., 109 (2011) 103525.

B. Burton, Acta Metall., 30 (1982) 905-910.

F.A. Mohamed, T.G. Langdon, Acta Metall., 22 (1974) 779-788.

X.S. Xie, G.L. Chen, P.J. McHugh, J.K. Tien, Scr. Metall., 16 (1982) 483-488.

S.L. Shang, W.Y. Wang, Y. Wang, Y. Du, J.X. Zhang, A.D. Patel, Z.K. Liu, J. Phys.: Condens. Matter, 24 (2012) 155402.

C. Brandl, P.M. Derlet, H. Van Swygenhoven, Phys. Rev. B, 76 (2007) 054124.

C. Woodward, D.R. Trinkle, L.G. Hector, D.L. Olmsted, Phys. Rev. Lett., 100 (2008) 045507.

F. Ercolessi, J.B. Adams, Europhys. Lett., 26 (1994) 583-588.

I.L. Dillamore, R.E. Smallman, Philos. Mag., 12 (1965) 191-193.

J.P. Hirth, J. Lothe, Wiley, New York 2nd (1982).

M.J. Mills, P. Stadelmann, Philos. Mag. A 60 (1989) 355-384.

L.E. Murr, Addison Wesley, Reading, MA, (1975).

R.E. Smallman, P.S. Dobson, Metall. Trans., 1 (1970) 2383-2389.

S. Kibey, J.B. Liu, D.D. Johnson, H. Sehitoglu, Acta Mater., 55(2007): 6843–6851.

S. Ogata, J. Li, S. Yip, Science, 298 (2002) 807-811.

M. Muzyk, Z. Pakiela, K.J. Kurzydlowski, Scr. Mater. 64 (2011) 916–918.

J.P. Simon, J. Phys. F: Met. Phys. 9 (1979) 425-430.

A. Aslanides, V. Pontikis, Comput. Mater. Sci., 10 (1998) 401-405.

M.L. Jahnátek, J. Hafner, M. Krajčí, Phys. Rev. B, 79 (2009) 224103.

S.L. Shang SL, W.Y. Wang, B.C. Zhou, Y. Wang, K.A. Darling, L.J. Kecskes, S.N. Mathaudhu, Z.K. Liu, Acta Mater., 67 (2014) 168-180.

S. Kritzinger, P.S. Dobson, R.E. Smallman, Philos. Mag., 16 (1967) 217-229.

M.S. Soliman, J. Mater. Sci., 28 (1993) 4483-4488.

M.S. Soliman, F.A. Mohamed, Metall. Trans. A, 15 (1984) 1893-1904.

P. Chaudhury, F.A. Mohamed, Mater. Sci. Eng. A, 101 (1988) 13-23.

G.E. Totten, D.S. MacKenzie, Handbook of mechanical alloy design, New York: Marcel Dekker (2003).

V.S. Zolotorevsky, N.A. Belov, M.V. Glazoff, Casting aluminum alloys, Elsevier: Amsterdam (2007).

K. Ishida, Phys. Stat. Sol. A, 36 (1976) 717-728.

L. Vitos, P.A. Korzhavyi, B. Johansson, Phys. Rev. Lett. 96 (2006) 117210.

D.J. Siegel, Appl. Phys. Lett., 87 (2005) 121901.

A. Datta, U.V. Waghmare, U. Ramamurty, Scr. Metar., 60 (2009) 124-127.

J. Han, X.M. Su, Z.H. Jin, Y.T. Zhu, Scr. Meter., 64 (2011) 693-696.

G. Kresse, J. Furthmuller, Phys. Rev. B, 54 (1996) 11169-11186.

G. Kresse, D. Joubert, Phys. Rev. B, 59 (1999) 1758-1775.

J.P. Perdew, Y. Wang, Phys. Rev. B, 45 (1992) 13244-13249.

P.R. Feynman, Phys. Rev., 56 (1939) 340-343.

M. Methfessel, A.T. Paxton, Phys. Rev. B, 40 (1989) 3616-3621.

P.E. Blöchl, O. Jepsen, O.K. Andersen, Phys. Rev. B, 49 (1994) 16223-16233.

Q.N. Gao, J. Wang, S.L. Shang, S.H. Liu, Y. Du, Z.K. Liu, CALPHAD, 47 (2014) 196-210.

J. Wang, S.L. Shang, Y. Wang, Z.G. Mei, Y.F. Liang, Y. Du, Z.K. Liu, CALPHAD, 35 (2011) 562-573.

J. Wang, Y. Du, S.L. Shang, Z.K. Liu, Y.W. Li, J. Min. Metall. Sect. B-Metall., 50 (2014) 37-44.

P. Villars P, L.D. Calvert, Pearson's handbook of crystallographic data for intermetallic phases. ASTM International, Newbury, OH (1991).

S.L. Shang, J. Wang, Y. Wang, Y. Du, Z.K. Liu, Comput. Mater. Sci., 50 (2011) 2096-2103.

R.H. Rautioaho, Phys. Stat. Sol., 112 (1982) 83-89.

Published
2018/10/17
How to Cite
Gao, Q., Liu, Y., Zhang, H., Yang, R., Geng, X., Gao, Y., Wang, J., Shang, S., Du, Y., & Liu, Z. (2018). Effect of alloying elements on the stacking fault energies of dilute Al-based alloys. Journal of Mining and Metallurgy, Section B: Metallurgy, 54(2), 185. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/16217
Section
Original Scientific Paper