Recovery valuable metals from complex converter slag at elevated temperature with sulfuric acid solution

  • Yalong Liao Kunming University of Science and Technology
  • Gongchu Shi Kunming University of Science and Technology
  • Feirong Huang Kunming University of Science and Technology
  • Yu Zhang Kunming University of Science and Technology
Keywords: filtration property, response surface methodology, pressure oxidative leaching, nickel converter slag,

Abstract


The aim of the present work was exploring the effective utilization of nickel converter slag by means of the methodology of pressure oxidative leaching. The central composite design of response surface methodology was employed to optimize controlling conditions for leaching more valuable metals such as nickel, cobalt and copper, while dissolution of iron was curbed. XRD, SEM-EDS were performed for characterizing the structure of leach residues for analyzing the mechanism of selective leaching. Experimental results demonstrate that the effects of temperature and sulfuric acid concentration on the metals extraction and filtration rate are significant, followed by liquid/solid (L/S) ratio. The optimized conditions for leaching the converter slag is: temperature 208 °C, sulfuric acid concentration 0.35 mol/L and L/S ratio 5.4 mL/g. Under the above conditions, 99.60% Co, 99.20% Ni and 96.80% Cu are extracted into solution together with only 0.21% Fe, and the filtration rate of leach slurry arrives 576.86 L∙m‒2∙h‒1. The mechanism for achieving selective leaching nickel, cobalt and copper against iron dissolution and good filtration performance of the leach slurry is letting iron dissolved in the solution decomposed and hydrolyzed mainly to form hematite (α-Fe2O3 and γ-Fe2O3) and letting silicic acid formed precipitated SiO2 in the leach residue.

Author Biographies

Yalong Liao, Kunming University of Science and Technology
Department of Metallugy, Faculty of Metallurgical and Energy Engineering; Professor.
Gongchu Shi, Kunming University of Science and Technology
Department of Metallugy, Faculty of Metallurgical and Energy Engineering;Master Degree Candidate.
Feirong Huang, Kunming University of Science and Technology
Department of Metallugy, Faculty of Metallurgical and Energy Engineering;Master Degree Candidate.
Yu Zhang, Kunming University of Science and Technology
Department of Metallugy, Faculty of Metallurgical and Energy Engineering; Master Degree Candidate.

References

Y. J. Li, V. G. Papangelakis, I. Perederiy, Hydrometallurgy, 97 (3-4) (2009) 185-193.

F. B. Waanders, J. Nell, Hyperfine Interactions, 218 (1-3) (2013) 101-105.

L. Tsymbulov, F. Kongoli, I. McBow, S. Pigarev, Mineral Processing and Extractive Metallurgy, 123(1) (2014) 10-20.

P.I. Guntoro, A. Jokilaakso, N. Hellstén, P. Taskinen, J. Min. Metall. Sect. B-Metall. 54 (3) (2018) 301-311.

Y. J. Li, I. Perederiy, V. G. Papangelakis, Journal of Hazardous Materials, 152 (2) (2008) 607-615.

E. K. Kopkova, P. B. Gromov, E. A. Shchelokova, Theoretical foundations of chemical engineering, 45 (2011) 505-510.

E. Rudnik, L. Burzyńska, W. Gumowska, Minerals Engineering, 22 (1) (2009) 88-95.

C. L. Fan, X. J. Zhai, Y. Fu, Y. F. Chang, B. C. Li, T. A. Zhang, Hydrometallurgy, 105 (1-2) (2010) 191-194.

X. J. Zhai, N. J. Li, X. Zhang, Y. Fu, L. Jiang, Transactions of Nonferrous Metals Society of China, 21 (9) (2011) 2117-2121.

J. Pan, G. L. Zheng, D. Q. Zhu, X. L. Zhou, Transactions of Nonferrous Metallurgy Socity of China, 23 (11) (2013) 3421-3427.

Y. Zhang, R. L. Man, W. D. Ni, H. Wang, Hydrometallurgy, 103 (1-4) (2010) 25-29.

M. I. Muravyov, A. G. Bulaev, T. F. Kondrat'eva, Minerals Engineering, 64 (2014) 63-66.

I. Perederiy, V. G. Papangelakis, M. Buarzaiga, I. Mihaylov, Journal of Hazardous Materials, 194 (2011) 399-406.

Y. L. Liao, F. R. Huang, J. Zhou, B. J. Li, The Chinese Journal of Chemical Engineering, 66 (10) (2015) 3971-3978.

M. Pesavento, M. Sturini, G. D’Agostino, R. Biesuz, Journal of Chromatography A, 1217 (8) (2010) 1208-1218.

C. E. Borba, G. H. F. Santos, E. A. Silva, Chemical Engineering Journal, 189-190 (2012) 49-56.

N. H. Shaidan, U. Eldemerdash, S. Awad, Journal of the Taiwan Institute of Chemical Engineers, 43 (1) (2012) 40-45.

M. K. Jha, D. Gupta, P. K. Choubey, Separation and Purification Technology, 122 (2014) 119-127.

G. S. Simate, S. Ndlovu, M. Gericke, Hydrometallurgy, 98 (3-4) (2009) 241-246.

N. Zhang, C. H. Sun, M. Ji, China Environmental Science, 30 (4) (2010) 383-386.

A. Abazarpoor, M. Halali, M. Maarefvand, Russian Journal of Non-Ferrous Metals, 54 (5) (2013) 388-397.

H. Z. Zhang, W. W. Ming, Q. L. An, M. Chen, B. Rong, B. Han, Journal of Shanghai Jiao Tong University, 44 (4) (2010) 447-451.

Y. Q. Ye, F. P. Qian, Acta Scientiae Circumstantiae, 32 (12) (2012) 3087-3094.

X. Y. Guo, D. Li, Z. Wu, Q. H. Tian, International Journal of Minerals, Metallurgy and Materials, 19 (3) (2012) 199-204.

M. N. Bari, M. Z. Alam, S. A. Muyibi, Bioresource Technology, 100 (12) (2009) 3115-3120.

A. Singh, N. R. Bishnoi, Industrial Crops and Products, 37 (1) (2012) 334-341.

T. Chang, T. Teng, N. Ismail, Journal of Environmental Management, 92 (10) (2011) 2580-2585.

S. M. He, J. K. Wang, J. F. Yan, Hydrometallurgy, 104 (2) (2010) 235-240.

V. Kumar, S. K. Sahu, B. D. Pandey, Hydrometallurgy, 103 (1-4) (2010) 45-53.

C. W. Yang, Y. L. Liao, Z. Q. Peng, The Chinese Journal of Nonferrous Metals, 24 (8) (2014) 2145-2151.

B. J. Li, Y. L. Liao, L. Hu, J. Zhou, Chemical Engineering (China), 43(8) (2015) 33-37.

Published
2020/01/29
How to Cite
Liao, Y., Shi, G., Huang, F., & Zhang, Y. (2019). Recovery valuable metals from complex converter slag at elevated temperature with sulfuric acid solution. Journal of Mining and Metallurgy, Section B: Metallurgy, 55(3), 359-370. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/19294
Section
Original Scientific Paper