Thermodynamic properties prediction of Mg-Al-Zn melts based on the Atom and Molecule Coexistence Theory

  • Man-cang Zhang Beijing Key Laboratory of Special Melting and Preparation of High-End Metal Materials, University of Science and Technology Beijing (USTB), Beijing 100083, P.R. China
  • Sheng-chao DUAN Beijing Key Laboratory of Special Melting and Preparation of High-End Metal Materials, University of Science and Technology Beijing (USTB), Beijing 100083, P.R. China
  • Rong-huan Xu Beijing Key Laboratory of Special Melting and Preparation of High-End Metal Materials, University of Science and Technology Beijing (USTB), Beijing 100083, P.R. China
  • Ming ZOU Jiuquan Iron and Steel (Group) Co., Ltd., Jiayuguan 735100, Gansu, P.R. China
  • Shi-wen DONG Jiuquan Iron and Steel (Group) Co., Ltd., Jiayuguan 735100, Gansu, P.R. China
  • Guo Hanjie Beijing Key Laboratory of Special Melting and Preparation of High-End Metal Materials, University of Science and Technology Beijing (USTB), Beijing 100083, P.R. China
  • Jing Guo Beijing Key Laboratory of Special Melting and Preparation of High-End Metal Materials, University of Science and Technology Beijing (USTB), Beijing 100083, P.R. China

Abstract


A developed and verified thermodynamic model based on the atom and molecule coexistence theory (AMCT) is employed to predict activities relative to pure liquids as standard state in Mg-Al, Mg-Zn, Al-Zn and Mg-Al-Zn melts through the calculated mass action concentrations of structural units, i.e., Ni According to AMCT, Ni can be extrapolated and worked out by the chemical equilibrium constant of a structural molecule, i.e., Ki, in the Mg-Al-Zn ternary system and binary subsystems, so that this paper has regressed and optimized the standard Gibbs free energy function with reported activities and mixing thermodynamic properties in Mg-Al, Mg-Zn and Al-Zn melts, then resulting in Ki and Ni deduced by Gibbs free energy function at studied temperature. The results of calculating thermodynamic-property in the full composition range for liquid Mg-Al-Zn from 880 to 1100 K, as well as Mg-Al from 923 to 1073 K, Mg-Zn from 880 to 973 K and Al-Zn from 1000 to 1073 K are present in the paper by coupling with Ni and AMCT. An excellent agreement is noticed between the calculated values of this study and measured thermodynamic data from the references, suggesting that the AMCT can be well applied to describe and predict the activities of the Mg-Al-Zn system and its subsystems.

References

S.D. Ji, Z.W. Li, L. Ma, Y.M. Yue, S.S. Gao, Strength Mater, 48 (1) (2016) 2-7.

Y. Kim, N.J. Kim, B. Lee, Calphad, 33 (4) (2009) 650-657.

Y. Wang, P.B. Prangnell, Mater. Charact., 139 (2018) 100-110.

Y.D.L.D. Dragana, Mater. Tehnol., 5 (46) (2012) 477-482.

T.T.J.A. P. Lianga, H.L.L.F. H. J. Seiferta, Thermochim. Acta, 314 (1-2) (1998) 87-110.

Y.B. Kim, F. Sommer, B. Predel, J. Alloy. Compd., 247 (1) (1997) 43-51.

Y. Tang, Y. Du, L. Zhang, X. Yuan, G. Kaptay, Thermochim. Acta, 527 (2012) 131-142.

Y. Yuan, F. Pan, D. Li, A. Watson, Calphad, 44 (2014) 54-61.

M. Mezbahul-Islam, A.O. Mostafa, M. Medraj, Journal of Materials, 2014 (2014) 1-33.

P. Ghosh, M. Mezbahul-Islam, M. Medraj, Calphad, 36 (2012) 28-43.

L. Balanović, D. Živković, D. Manasijević, D. Minić, V. Ćosović, N. Talijan, J. Therm. Anal. Calorim., 118 (2) (2014) 1287-1292.

A. Roósz, J. Farkas, G. Kaptay, Materials Science Forum, 414 (2003) 323-328.

E.T.M.Y. Itoh G, J. Jpn. Inst. Light Met, 38 (1988) 818-839.

H. Guo, Chin. J. Biomed. Eng., 39 (4) (2017) 502-510.

S. Duan, X. Shi, W. Yang, H. Guo, J. Guo, T. Nonferr. Metal. Soc., 28 (6) (2018) 1256-1264.

J. Zhang, Computational Thermodynamics of Metallurgical Melts and Solutions, Metallurgical Industry Press, Beijing, 2007, p. 38-141

J. Zhang, T. Nonferr. Metal. Soc., 14 (2) (2008) 345-350.

S. Duan, H. Chen, H. Guo, Y. Lian, Chin. J. Biomed. Eng., 38 (10) (2016) 1377-1385.

G.S.P. Bhatt Y J, Metallurgical Transactions B, 2 (7) (1976) 271-275.

G. Lu, Z. Qiu, T. Nonferr. Metal. Soc., 1 (8) (1998) 109-113.

B.L. Tiwari, METALLURGICAL TRANSACTIONS A, 9 (18) (1987) 1645-1651.

R.R. Hultgren, 66 (1) (1973) 55-98.

S. Wasiur-Rahman, M. Medraj, Intermetallics, 17 (10) (2009) 847-864.

M. Z, Metallurgical Transactions, 6 (5) (1974) 1445-1450.

N.D.B.S. Franke P, Landolt Börnstein, (2005).

W. S, MA Sc Thesis in Mechanical and Industrial Engineering, (2009).

M.E.S.D. Lynch, Canadian Mathematical Bulletin, 27 (1) (1988) 401-411.

Published
2019/07/25
How to Cite
Zhang, M.- cang, DUAN, S.- chao, Xu, R.- huan, ZOU, M., DONG, S.- wen, Hanjie, G., & Guo, J. (2019). Thermodynamic properties prediction of Mg-Al-Zn melts based on the Atom and Molecule Coexistence Theory. Journal of Mining and Metallurgy, Section B: Metallurgy, 55(2), 135. Retrieved from https://aseestant.ceon.rs/index.php/jmm/article/view/19677
Section
Original Scientific Paper