Bacillus velezensis – BIOKONTROLNA AKTIVNOST MIKROBIOLOŠKE BIOMASE I EKSTRACELULARNIH JEDINJENJA PROTIV Xanthomonas spp.

  • Ivana Pajčin Univerzitet u Novom Sadu, Tehnološki fakultet Novi Sad, Katedra za biotehnologiju i farmaceutsko inženjerstvo
  • Vanja Vlajkov University of Novi Sad, Faculty of Technology Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
  • Jelena Dodić University of Novi Sad, Faculty of Technology Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
  • Marta Loc University of Novi Sad, Faculty of Agriculture, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia
  • Mila Grahovac University of Novi Sad, Faculty of Agriculture, Trg Dositeja Obradovića 8, 21000 Novi Sad, Serbia
  • Jovana Grahovac University of Novi Sad, Faculty of Technology Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
Ključne reči: antimikrobna aktivnost, kultivaciona tečnost, supernatant, termički tretman, Xanthomonas campestris, Xanthomonas euvesicatoria

Sažetak


Bacillus velezensis je nova biokontrolna vrsta koja ispoljava nekoliko mehanizama biološke kontrole biljnih patogena, uključujući antibiozu, proizvodnju drugih vrsta antimikrobnih jedinjenja, kao što su isparljiva organska jedinjenja, direktnu kompeticiju u pogledu hranljivih materija i prostora za rast, kao i indukciju imunog odgovora biljaka prema patogenima. Cilj ovog istraživanja bila je procena potencijala soja Bacillus velezensis IP22, gajenog na optimizovanoj podlozi sa glicerolom kao izvorom ugljenika, za in vitro suzbijanje fitopatogenih sojeva roda Xanthomonas - Xanthomonas campestris i Xanthomonas euvesicatoria. Ispitani su različiti potencijalni biokontrolni agensi: kultivaciona tečnost, koji sadrži biomasu Bacillus velezensis IP22 i proizvedene ekstracelularne metabolite, i supernatant oslobođen biomase dobijen centrifugiranjem kultivacione tečnosti (10000 rpm, 10 min), koji je sadržao samo proizvedena ekstracelularna jedinjenja. Pored toga, uzorci supernatanta su podvrgnuti termičkom tretmanu da bi se utvrdilo da li u supernatantu postoje termosenzitivna ekstracelularna jedinjenja. Vakuum uparavanje je izvedeno sa ciljem koncentrisanja uzoraka supernatanta kako bi se uporedio efekat veće koncentracije ekstracelularnih jedinjenja na rast patogena. Rezultati su pokazali prosečne prečnike zona inhibicije od 66,00 mm za uzorke kultivacione tečnosti, 25,67 mm za uzorke supernatanta, 10,00 mm za termički tretirane uzorke supernatanta i 43,50 mm za uzorke koncentrovanog supernatanta. Dalja istraživanja u ovoj oblasti treba da obuhvate optimizaciju proizvodnih procesa u cilju maksimizacije sadržaja biomase Bacillus velezensis IP22 i/ili biosinteze antimikrobnih metabolita, kao i njihovu preciznu identifikaciju i karakterizaciju radi boljeg razumevanja mehanizama biokontrolne aktivnosti protiv fitopatogena Xanthomonas spp.

Reference

Alenezi, F.N., Slama, H.B., Bouket, A.C., Cherif-Silini, H., Silini, A., Luptakova, L., Nowakowska, J.A., Oszako, T., Belbahri, L. (2021). Bacillus velezensis: a treasure house of bioactive compounds of medicinal, biocontrol and environmental importance. Forests, 12, 1714.


Baharudin, M.M.A., Ngalimat, M.S., Shariff, F.M., Yusof, Z.N.B., Karim, M., Baharum,S.N., Sabri, S. (2021). Antimicrobial activities of Bacillus velezensis strains isolated from stingless bee products against methicillin-resistant Staphylococcus aureus. PLoS ONE, 16, e0251514.


Bihn, E.A., Reiners, S. (2018). Good agricultural practices and good manufacturing practices for vegetable production. In: Handbook of Vegetables and Vegetable Processing, 2nd edition, Siddiq, M., Uebersax, M.A. (Eds.). John Wiley & Sons, Hoboken, New Jersey, USA.


Chen, N.W.G., Serres-Giardi, L., Ruh, M., Briand, M., Bonneau, S., Darrasse, A., Barbe, V., Gagnevin, L., Koebnik, R., Jacques, M.-A. (2018). Horizontal gene transfer plays a major role in the pathological convergence of Xanthomonas lineages on common bean. BMC Genomics, 19, 606.


Chen, Z., Zhao, L., Chen, W., Dong, Y., Yang, C., Li, C., Xu, H., Gao, X., Chen, R., Li, L., Xu, Z. (2020). Isolation and evaluation of Bacillus velezensis ZW-10 as a potential biological control agent against Magnaporthe oryzae. Biotechnology & Biotechnological Equipment, 34, 714-724.


Fira, Đ., Dimkić, I., Berić, T., Lozo, J., Stanković, S. (2018). Biological control of plant pathogens by Bacillus species. Journal of Biotechnology, 285, 44-55.


Grahovac, J., Pajčin, I., Vlajkov, V., Rončević, Z., Dodić, J., Cvetković, D., Jokić, A. (2021). Xanthomonas campestris biocontrol agent: Selection, medium formulation and bioprocess kinetic analysis. Chemical Industry and Chemical Engineering Quarterly, 27, 131-142.


Jennings, A.A., Li, Z. (2020). Worldwide regulatory guidance values applied to direct contact surface soil pesticide contamination: Part I - carcinogenic pesticides. Air, Soil and Water Research, 10, 1-12.


Köhl, J., Kolnaar, R., Ravensberg, W.J. (2019). Mode of action of microbial biological control agents against plant diseases: relevance beyond efficacy. Frontiers in Plant Science, 10, 845.


Mácha, H., Marešová, H., Jŭríková, T., Švecová, M., Benada, O., Škríba, A., Baránek, M., Novotný, Č., Palyzová, A. (2021). Killing effect of Bacillus velezensis FZB42 on a Xanthomonas campestris pv. campestris (Xcc) strain newly isolated from cabbage Brassica oleracea convar. capitata (L.): a metabolomic study. Microorganisms, 9, 1410.


Pajčin, I., Vlajkov, V., Frohme, M., Grebinyk, S., Grahovac, M., Mojićević, M., Grahovac, J. (2020). Pepper bacterial spot control by Bacillus velezensis: bioprocess solution. Microorganisms, 8, 1463.


Payá Pérez, A., Rodríguez Eugenio, N. (2018). Status of local soil contamination in Europe: Revision of the indicator “Progress in the management Contaminated Sites in Europe”, EUR 29124 EN. Publications Office of the European Union, Luxembourg, Belgium.


Potnis, N., Timilsina, S., Strayer, A., Shantharaj, D., Barak, J.D., Paret, M.L., Vallad, G.E., Jones, J.B. (2015). Bacterial spot of tomato and pepper: diverse Xanthomonas species with a wide variety of virulence factors posing a worldwide challenge. Molecular Plant Pathology, 16, 907-920.


Raman, N.M., Easwaran, M., Kaul, R., Bharti, J., Motelb, K.F.A., Kaul, T. (2020). Antimicrobial resistance with special emphasis on pathogens in agriculture. In: Antimicrobial resistance, Mareș, M., Lim, S.H.E., Lai, K.-S., Cristina, R.-T. (Eds.). IntechOpen Limited, London, UK.


Shu, X., Wang, Y., Zhou, Q., Li, M., Hu, H., Ma, Y., Chen, X., Ni, J., Zhao, W., Huang, S., Wu, L. (2018). Biological degradation of aflatoxin b1 by cell-free extracts of Bacillus velezensis DY3108 with broad pH stability and excellent thermostability. Toxins, 10, 330.


Sundin, G.W., Wang, N. (2018). Antibiotic resistance in plant-pathogenic bacteria. Annual Review of Phytopathology, 56, 161-180.


Wang, S., Sun, L., Zhang, W., Chi, F., Hao, X., Bian J., Li, Y. (2020). Bacillus velezensis BM21, a potential and efficient biocontrol agent in control of corn stalk rot caused by Fusarium graminearum. Egyptian Journal of Biological Pest Control, 30, 9.


Ye, M., Tang, X., Yang, R., Zhang, H., Li, F., Tao, F., Li, F., Wang, Z. (2018). Characteristics and application of a novel species of Bacillus: Bacillus velezensis. ACS Chemical Biology, 13, 500-505.

Objavljeno
2022/03/17
Rubrika
Članci