SCHIZOPHRENIA AND OSTEOPOROSIS

  • Tatjana P Nikolić Institut za medicinsku i kliničku biohemiju Medicinski fakultet Univerziteta u Beogradu
  • Nataša D Petronijević Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, Belgrade, Serbia

Sažetak


Schizophrenia (SCH) is a complex mental disorder that affects about 1% of the population. SCH is characterized by positive symptoms, negative symptoms and cognitive impairment. SCH patients often require a long-term treatment with antipsychotics. Unfortunately, metabolic side effects, decrease of bone mineral density (BMD) and osteoporotic fractures often follow treatment with antipsychotics. Osteoporosis is a degenerative disease characterized by decreased bone stiffness, as signified by low bone mineral density, vertebral or nonvertebral fragility fractures and disruption of bone microarchitecture. Decreased BMD and increased incidence of fractures are described in SCH patients treated for a long time with antipsychotics . On the other hand, deterioration of bones and metabolic disturbances are seen in SCH patients who have never received antipsychotics. It remains unclear are the observed changes of bones consequence of disease process itself or antipsychotics together with characteristic life style of patients that usually include smoking, poor nutrition, sedentary and   low vitamin D, are responsible.  The mechanisms of antipsychotic-induced osteoporosis are complex. The most possible one is hyperprolactinemia. Hyperprolactinemia might directly affect bone turnover by stimulating bone resorption relative to bone formation. Also, prolonged hyperprolactinemia may cause hypogonadotropic hypogonadism, resulting at the end in impaired suppression of sex hormones and ultimately in changes in bone metabolism. On the other hand bone remodeling is also controlled by the hypothalamic-pituitary-adrenal (HPA) axis. Dysregulation of HPA axis activity is consistently described in SCH patients. Perinatal phencyclidine (PCP) administration to rodents represents an animal model of SCH. This model is suitable for the investigations if the changes of bones are consequence of disease itself or applied antipsychotics. Furthermore, it can be used to clarify the mechanism of action of PCP and chronic treatment with antipsychotics on bone structure and body composition in order to prevent the occurrence of osteoporosis.

Key words: schizophrenia, antipsychotics, bone mineral density, osteoporosis, hyperprolactinemia

 

SAŽETAK

Shizofrenija (schizophrenia, SCH) je kompleksno mentalno oboljenje koji pogađa oko 1% populacije. SCH se karakteriše pozitivnim simptomima, negativnim simptomima i kognitivnom disfunkcijom. SCH pacijenti često zahtevaju dugotrajno lečenje antipsihoticima. Nažalost, tretman antipsihoticima često je povezan sa neželjenim metaboličkim efektima, smanjenom koštanom mineralnom gustinom (bone mineral density, BMD) i osteoporotičnim prelomima. Osteoporoza je degenerativna bolest koju karakteriše smanjena čvrstina kostiju, značajno smanjena koštana mineralna gustina, fragilnost pršljenova i ostalih kostiju, prelomi i narušena koštana mikroarhitektura. Smanjenje BMD i povećani rizik od preloma su uočeni kod SCH pacijenata koji su na dugoročnoj terapiji antipsihoticima. Međutim, promene koštane mase i metaboličkih parametara su takođe uočene kod pacijenata koji nisu primali terapiju. Još uvek nije razjašnjeno da li su uočene promene karakteristika same bolesti ili način života obolelih (pušenje, sedentarni način života, ishrana, nedostatak vitamina D) zajedno sa tretmanom antipsihoticima dovode do smanjenja koštane mase. Mehanizmi kojima antipsihotici uzrokuju osteoporozu su izuzetno kompleksni. Pretpostavlja se da je nastanak hiperprolaktinemije najverovatniji. Hiperprolaktinemija može direktno uticati na metabolizam kostiju stimulisanjem resorpcije koštanog tkiva i remećenjem formiranja kostiju. Takođe, dugotrajna hiperprolaktinemija može uzrokovati hipogonadotropni hipogonadizam, sa posledičnim smanjenjem sekrecije polnih hormona koji značajno utiču na metabolizam kostiju. Homeostaza kostiju je takođe regulisana preko hipotalamo-hipofizno-adrenalne (HPA) osovine. Disregulacija HPA osovine se često opisuje kod obolelih od shizofrenije. Perinatalna primena fenciklidina (phencyclidine, PCP) pacovima predstavlja animalni model SCH. Ovaj model je pogodan za ispitivanje da li su promene na kostima posledica same bolesti ili primenjenih antipsihotika. Štaviše, može se koristiti za rasvetljavanje mehanizma delovanja fenciklidina i hroničnog tretmana antipsihoticima na koštanu strukturu i telesni sastav, a u cilju prevencije nastanka osteoporoze.

Ključne reči: shizofrenija, antipsihotici, koštana mineralna gustina, osteoporoza, hiperprolaktinemija

Biografije autora

Tatjana P Nikolić, Institut za medicinsku i kliničku biohemiju Medicinski fakultet Univerziteta u Beogradu

Katedra za medicinsku i kliničku biohemiju

Asistent

Nataša D Petronijević, Institute of Medical and Clinical Biochemistry, Faculty of Medicine, University of Belgrade, Belgrade, Serbia

Professor, MD, PhD

Reference

Van Os J, Kapur S. Schizophrenia. Lancet. 2009; 374:635–45.

American Psychiatric Association. Diagnostic and Statistical Manual of

Owen MJ, Sawa A, Mortensen PB. Schizophrenia. Lancet. 2016 Jul 2; 388(10039):86-97.

Gardos G, Casey DE, Cole JO, Perenyi A, Kocsis E, Arato M, et al. Ten year outcome of tardive dyskinesia. Am J Psychiatry. 1994; 151:836-41.

Freedman R. Schizophrenia. N Engl J Med. 2003; 349:1738–49.

Reid IR. Relationships between fat and bone. Osteoporos Int.

Ballon J, Pajvani U, Freyberg Z, Leibel R, Lieberman J. Molecular pathophysiology of metabolic effects of antipsychotic medications. Trends Endocrinol Metab. 2014; 25(11):593–600.

Seeman P, Corbett R, Van Tol HH. Atypical neuroleptics have low affinity for dopamine D2 receptors or are selective for D4 receptors. Neuropsychopharmacology. 1997; 16:93–110.

Richelson E, Souder T. Binding of antipsychotic drugs to human brain receptors focus on newer generation compounds. Life Sci. 2000; 68:29–39.

Farde L, Wiesel F, Nordstrom A, Sedvall G. D1- and D2-dopamine receptor occupancy during treatment with conventional and atypical neuroleptics. Psychopharmacology (Berl). 1989; 99:S28–S31.

K, et al. Antipsychotic drugs antagonize human serotonin type 3 receptor currents in a noncompetitive manner. Mol. Psychiatry. 2004; 846–858.

Wu H, Deng L, Zhao L, Zhao J, Li L, Chen J. Osteoporosis associated with antipsychotic treatment in schizophrenia. Int J Endocrinol. 2013; 2013:167138.

Kanis J, McCloskey E, Johansson H, Cooper C, Rizzoli R, Reginster JY. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos. Int. 2013; 24: 23–57.

National Institutes of Health Office of the Direction: Osteoporosis prevention, diagnosis, and therapy. NIH Consensus Statement. 2000; 17:1-45.

International Osteoporosis Foundation. Available at: http://www.iofbonehealth.org. [Last accessed 12 October 2015].

Lupsa BC, Insogna K. Bone Health and Osteoporosis. Endocrinol Metab Clin North Am. 2015; 44(3):517-30.

Peuskens J, Pani L, Detraux J, De Hert M. The effects of novel and newly approved antipsychotics on serum prolactin levels: a comprehensive literature review. CNS Drugs. 2014; 28(5):421-53.

Bernabei R, Martone AM, Ortolani E, Landi F, Marzetti E. Screening, diagnosis and treatment of osteoporosis: a brief review. Clin Cases Miner Bone Metab. 2014; 11(3):201-7.

WHO Technical Report Series. Prevention and management of osteoporosis. Geneva, 2003.

Higuchi T, Komoda T, Sugishita M, Yamazaki J, Miura M, Sakagishi Y, et al. Certain neuroleptics reduce bone mineralization in schizophrenic patients. Neuropsychobiology. 1987; 18(4):185-8.

Delva NJ, Crammer JL, Jarzylo SV, Lawson JS, Owen JA, Sribney M, et al. Osteopenia, pathological fractures, and increased urinary calcium excretion in schizophrenic patients with polydipsia. Biological Psychiatry. 1989 Dec; 26(8):781-93.

Pouwels S, van Staa TP, Egberts AC, Leufkens HG, Cooper C, de Vries F. Antipsychotic use and the risk of hip/femur fracture: a population-based case-control study. Osteoporos Int. 2009; 20:1499–506.

Maric N, Popovic V, Jasovic-Gasic M, Pilipovic N, van Os J. Cumulative exposure to estrogen and psychosis: a peak bone mass, case–control study in first-episode psychosis. Schizophr Res. 2005; 73:351–5.

Chen CY, Lane HY, Lin CH. Effects of antipsychotics on bone mineral density in patients with schizophrenia: gender differences. Clin Psychopharmacol Neurosci. 2016; 14(3):238–49.

Falconer IR, Langley JV, Vacek AT. Effect of prolactin on 86Rb+ uptake, potassium content and [G-3H]ouabain binding of lactating rabbit mammary tissue. J Physiol. 1983 Jan; 334:1-17.

Freeman ME, Kanyicska B, Lerant A, Nagy G. Prolactin: structure, function, and regulation of secretion. Physiol Rev. 2000; 80:1523-631.

Molitch ME. Medication-induced hyperprolactinemia. Mayo Clin Proc. 2005 Aug; 80(8):1050-7.

Bulut SD, Bulut S, Tüzer V, Ak M, Ak E, Kisa C, et al. The effects of Prolactin-raising and Prolactin-sparing antipsychotics on Prolactin levels and bone mineral density in schizophrenic patients. Ar chives of. Neuropsychiatry. 2014; 51:205–10.

O'Keane V, Meaney AM. Antipsychotic drugs: a new risk factor for osteoporosis in young women with schizophrenia? J Clin Psychopharmacol. 2005; 25(1):26-31.

Seriwatanachai D1, Thongchote K, Charoenphandhu N, Pandaranandaka J, Tudpor K, Teerapornpuntakit J, et al. Prolactin directly enhances bone turnover by raising osteoblast-expressed receptor activator of nuclear factor κB ligand/osteoprotegerin ratio. Bone. 2008 Mar; 42(3):535-46.

Motyl KJ, Dick-de-Paula I, Maloney AE, Lotinun S, Bornstein S, de Paula FJ, et al. Trabecular bone loss after administration of the second-generation antipsychotic risperidone is independent of weight gain. Bone. 2012; 50(2):490–498.

Seriwatanachai D, Krishnamra N, van Leeuwen JP. Evidence for direct effects of prolactin on human osteoblasts: Inhibition of cell growth and mineralization. J Cell Biochem. 2009; 107(4):677-85.

Graham SM, Howgate D, Anderson W, Howes C, Heliotis M, Mantalaris A, et al. Risk of osteoporosis and fracture incidence in patients on antipsychotic medication. Expert Opinion on Drug Safety. 2011; 10(4):575–602.

Meaney AM, O’Keane V. Prolactin and schizophrenia: clinical consequences of hyperprolactinaemia. Life Sciences. 2002; 71(9):979–992.

Kishimoto T, De Hert M, Carlson HE, Manu P, Correll CU. Osteoporosis and fracture risk in people with schizophrenia. Curr Opin Psychiatry. 2012; 25(5):415-29.

Okita K, Kanahara N, Nishimura M, Yoshida T, Yasui-Furukori N, Niitsu T, et al. Second-generation antipsychotics and bone turnover in schizophrenia. Schizophr Res. 2014 Aug; 157(1-3):137-41.

Naidoo U, Goff DC, Klibanski A. Hyperprolactinemia and bone mineral density: the potential impact of antipsychotic agents. Psychoneuroendocrinology. 2003; 28:97-108.

Jung DU, Conley RR, Kelly DL, Kim DW, Yoon SH, Jang JH, et al. Prevalence of bone mineral density loss in Korean patients with schizophrenia: a crosssectional study. J Clin Psychiatry. 2006; 67:1391–6.

Stubbs B, De Hert M, Sepehry AA, Correll CU, Mitchell AJ, Soundy A, et al. A meta-analysis of prevalence estimates and moderators of low bone mass in people with schizophrenia. Acta Psychiatr Scand. 2014; 130(6):470–86.

De Hert M, Detraux J, Stubbs B. Relationship between antipsychotic medication, serum prolactin levels and osteoporosis/osteoporotic fractures in patients with schizophrenia: a critical literature review. Expert Opin Drug Saf. 2016 Jun; 15(6):809-23.

Meaney AM, Smith S, Howes OD, O’Brien M, Murray RM, O’Keane V. Effects of long-term prolactin-raising antipsychotic medication on bone mineral density in patients with schizophrenia. Br J Psychiatry. 2004; 184:503–8.

Kinon BJ, Liu-Seifert H, Stauffer VL, Jacob J. Bone loss associated with hyperprolactinemia in patients with schizophrenia. Clin Schizophr Relat Psychoses. 2013; 7(3):115-23.

Lin CH, Lin CY, Huang TL, Wang HS, Chang YC, Lane HY. Sex-specific factors for bone density in patients with schizophrenia. Int Clin Psychopharmacol. 2015; 30(2):96–102.

Wade SW, Strader C, Fitzpatrick LA, Anthony MS, O'Malley CD. Estimating prevalence of osteoporosis: examples from industrialized countries. Arch Osteoporos. 2014; 9:182.

Takahashi T, Uchida H, John M, Hirano J, Watanabe K, Mimura M, et al. The impact of prolactin-raising antipsychotics on bone mineral density in patients with schizophrenia: findings from a longitudinal observational cohort. Schizophr Res. 2013; 147:383–6.

Lin CH, Huang KH, Chang YC, Huang YC, Hsu WC, Lin CY, et al. Clozapine protects bone mineral density in female patients with schizophrenia. Int J Neuropsychopharmacol. 2012; 15(7):897–906.

Bushe C, Shaw M, Peveler RCA. Review of the association between antipsychotic use and hyperprolactinaemia. J Psychopharmacol. 2008; 22(2):46–55.

Lee TY, Chung MY, Chung HK, Choi JH, Kim TY, So HS. Bone density in chronic schizophrenia with long-term antipsychotic treatment: preliminary study. Psychiatry Investig. 2010; 7:278-284.

Selye H. Stress and distress. Compr Ther. 1975; 1:9-13.

Oakley RH, Cidlowski JA. The biology of the glucocorticoid receptor: new signaling mechanisms in health and disease. J Allergy Clin Immunol. 2013; 132:1033-1044.

Seibel MJ, Cooper MS, Zhou H. Glucocorticoid-induced osteoporosis: mechanisms, management, and future perspectives. Lancet Diabetes Endocrinol. 2013; 1:59-70.

Azuma K, Adachi Y, Hayashi H, Kubo KY. Chronic Psychological Stress as a Risk Factor of Osteoporosis. J UOEH. 2015 Dec 1; 37(4):245-53.

Bradley AJ, Dinan TG. A systematic review of hypothalamic-pituitary adrenal axis function in schizophrenia: implications for mortality. J Psychopharmacol. 2010; 24:91–118.

Szymańska M, Budziszewska B, Jaworska-Feil L, Basta-Kaim A, Kubera M, Leśkiewicz M, et al. The effect of antidepressant drugs on the HPA axis activity, glucocorticoid receptor level and FKBP51 concentration in prenatally stressed rats. Psychoneuroendocrinology. 2009 Jul; 34(6):822-32.

Szymańska M, Suska A, Budziszewska B, Jaworska-Feil L, Basta-Kaim A, Leśkiewicz M, et al. Prenatal stress decreases glycogen synthase kinase-3 phosphorylation in the rat frontal cortex. Pharmacol Rep. 2009 Jul-Aug; 61(4):612-20.

Halbreich U, Palter S. Accelerated osteoporosis in psychiatric patients: possible pathophysiological processes. Schizophr Bull. 1996; 22(3):447–54.

Brenner K, Liu A, Laplante DP, Lupien S, Pruessner JC, Ciampi A, et al. Cortisol response to a psychosocial stressor in schizophrenia: blunted, delayed, or normal? Psychoneuroendocrinology. 2009 Jul; 34(6):859-68.

van Venrooij JA, Fluitman SB, Lijmer JG, Kavelaars A, Heijnen CJ, Westenberg HG, et al. Impaired neuroendocrine and immune response to acute stress in medication-naive patients with a first episode of psychosis. Schizophr Bull. 2012 Mar; 38(2):272-9.

Mondelli V, Dazzan P, Hepgul N, Di Forti M, Aas M, D'Albenzio A, et al. Abnormal cortisol levels during the day and cortisol awakening response in first-episode psychosis: the role of stress and of antipsychotic treatment. Schizophr Res. 2010a; 116:234–42.

Jakovljevic M, Pivac N, Mihaljevic-Peles A, Mustapic M, Relja M, Ljubicic D, et al. The effects of olanzapine and fluphenazine on plasma cortisol, prolactin and muscle rigidity in schizophrenic patients: a double blind study. Prog Neuro-Psychopharmacol Biol Psychiatry. 2007; 31(2):399–402.

Popovic V, Doknic M, Maric N, Pekic S, Damjanovic A, Miljic D, et al. Changes in neuroendocrine and metabolic hormones induced by atypical antipsychotics in normal-weight patients with schizophrenia. Neuroendocrinology. 2007; 85:249–56.

Zhang XY, Zhou DF, Cao LY, GY W, Shen YC. Cortisol and cytokines in chronic and treatment-resistant patients with schizophrenia: association with psychopathology and response to antipsychotics. Neuropsychopharmacology. 2005; 30:1532–8.

Cohrs S, Röher C, Jordan W, Meier A, Huether G, Wuttke W, et al. The atypical antipsychotics olanzapine and quetiapine, but not haloperidol, reduce ACTH and cortisol secretion in healthy subjects. Psychopharmacology. 2006; 185:11–8.

Meltzer HY. Clinical studies on the mechanism of action of clozapinee: the dopamine serotonin hypothesis of schizophrenia. Psychopharmacology. 1989; 99:S18–27.

Furuzawa M, Chen H, Fujiwara S, Yamada K, Kubo KY. Chewing ameliorates chronic mild stressinduced bone loss in senescence-accelerated mouse (SAMP8), a murine model of senile osteoporosis. Exp Gerontol. 2014; 55:12-18.

Kurahashi M, Kondo H, Iinuma M, Tamura Y, Chen H, Kubo KY. Tooth loss early in life accelerates age-related bone deterioration in mice. Tohoku J Exp Med. 2015; 235:29-37.

Jones CA, Watson DJ, Fone KC. Animal models of schizophrenia. Br J Pharmacol. 2011 Oct; 164(4):1162-94.

Radonjic NV, Knezevic ID, Vilimanovich U, Kravic-Stevovic T, Marina LV, Nikolic T, et al. Decreased glutathione levels and altered antioxidant defence in an animal model of schizophrenia: long-term effects of perinatal phencyclidine administration. Neuropharmacology. 2010; 58:739–45.

Wang C, McInnis J, Ross-Sanchez M, Shinnick-Gallagher P, Wiley JL, Johnson KM. Long-term behavioural and neurodegenerative effects of perinatal phencyclidine administration: implications for schizophrenia. Neuroscience. 2001; 107:535–50.

Tsai G, Coyle JT. Glutamatergic mechanisms in schizophrenia. Annu Rev Pharmacol Toxicol. 2002; 42:165–179.

Coyle JT, Tsai G, Goff D. Converging evidence of NMDA receptor hypofunction in the pathophysiology of schizophrenia. Ann N Y Acad Sci. 2003; 1003:318–327.

Bey T, Patel A. Phencyclidine intoxication and adverse effects: a clinical and pharmacological review of an illicit drug. Cal J Emerg Med. 2007; VIII:9–15.

Olney JW, Farber NB. Glutamate receptor dysfunction and schizophrenia. Arch Gen Psychiatry. 1995; 52:998–1007.

Phillips M, Wang C, Johnson KM. Pharmacological characterization of locomotor sensitization induced by chronic phencyclidine administration. J Pharmacol Exp Ther. 2001; 296:905–913.

Kunimatsu T, Kimura J, Funabashi H, Inoue T, Seki T. The antipsychotics haloperidol and chlorpromazine increase bone metabolism. Regul Toxicol Pharmacol. 2010; 58:360–8.

Costa JL, Smith G, Watson M, Lin JM, Callon K, Gamble G, et al. The atypical anti psychotic clozapine decreases bone mass in rats in vivo. Schizophr Res. 2011; 126:291–7.

Petronijevic N, Sopta J, Doknic M, Radonjic N, Petronijevic M, Pekic S, et al. Chronic risperidone exposure does not show any evidence of bone mass deterioration in animal model of schizophrenia. Prog NeuroPsychopharmacol Biol Psychiatry. 2013; 46:58–63.

Nikolić T, Petronijević M, Sopta J, Velimirović M, Stojković T, Jevtić Dožudić G, et al. Haloperidol affects bones while clozapine alters metabolic parameters - sex specific effects in rats perinatally treated with phencyclidine. BMC Pharmacol Toxicol. 2017 Oct 11; 18(1):65.

Miller MJ. The importance of screening for osteoporosis in mental health settings. Clin Schizophr Relat Psychoses. 2009; 3(3):155–160.

Objavljeno
2018/07/03
Rubrika
Mini pregledni članak