ULOGA GLIJA ĆELIJA, KRVNO-MOŽDANE BARIJERE I CITOKINA U NASTANKU KONVULZIJA: IMPLIKACIJE ZA TERAPEUTSKE MODALITETE

  • Nikola B Šutulović Institut za medicinsku fiziologiju, Medicinski fakultet u Beogradu, Visegradska 26/II, 11000 Belgrade
  • Simone Pietro Marchini Faculty of Medicine, University of Pavia, Pavia, Italy
  • Sonja R Šuvakov Institut za medicinsku i kliničku biohemiju, Medicinski fakultet u Beogradu, Pasterova 2, 11000 Belgrade
  • Dragan R Hrnčić Institute of Medical Physiology "Rihard Burian", Faculty of Medicine, University of Belgrade, Visegradska 26/II, 11000 Belgrade, Serbia

Sažetak


Epilepsija predstavlja hroničnu, učestalu neurološku bolest koja se karakteriše prolaznom, paroksizmalnom i hipersinhronom aktivnošću moždanih neurona, a manifestuje se u obliku konvulzivnih napada. Razvija se kroz proces epileptogeneze koji podrazumeva poremećaj ekcitabilnosti neurona, uspostavalje kritičnih međuveza između neurona, razvoj nervne hiperekscitabilnosti i degeneracije, kao i reorganizaciju neuronske mreže.

Postoje brojni različiti mehanizmi epileptogeneze koji uključuju neuroiflamacijju koja je u skorašnjem vremenu označena kao značajan i novi mehanizam. U ovom revijskom radu cilj će biti da se rasvetle najnovija činjenična saznanja o neuroiflamaciji kao patogeneteskom faktoru epileptogeneze.

Neuroiflamacija se karakteriše strukturnom i funkcionalnom alteracijom glijanih ćelija u CNS-u, nakupljenjem ćelija imuniteta poreklom izvan CNS-a uz disfunkciju krvno-moždane barijere (KMB). Moremećaj ekstracelularne mikrosredine u CNS-u je takođe često praćen povećanom sintezom proinflamatornih citokina (IL-6, IL-1β, TNF-α, IFN-γ)  i hemokina u CNS-u. Uzajamno dejstvo između alteracije glijalnih ćelija, disfunkcije KMB, citokina i hemokina, dovodi do uspostavljanja pozitivne povratne sprege u kaskadnom procesu epileptogeneze.

Još u vek je nejasno da li neuroiflamacija dovodi do epileptogeneze ili je samo posledica iste, ali, postoje jasne činjenice koje ukazuju da postoji pozitivna povratna sprega između ova dva procesa. Činjenica da postoji povezanost ova dva procesa može biti korisno saznanje u smislu iznalaženja potentnijih terapeutskih tretmana neuroiflamacije koji bi doveli do pozitivnih efekata u lečenju pacijenata sa epilepsijom.

Ključne reči: epilepsija, epileptogneza, neuroinflamacija, alterajija glijanih ćelija, disfukncija KMB, citokini, hemokini

Biografije autora

Nikola B Šutulović, Institut za medicinsku fiziologiju, Medicinski fakultet u Beogradu, Visegradska 26/II, 11000 Belgrade
Saradnik u nastavi
Sonja R Šuvakov, Institut za medicinsku i kliničku biohemiju, Medicinski fakultet u Beogradu, Pasterova 2, 11000 Belgrade
Asistent
Dragan R Hrnčić, Institute of Medical Physiology "Rihard Burian", Faculty of Medicine, University of Belgrade, Visegradska 26/II, 11000 Belgrade, Serbia
Docent

Reference

Fisher RS, Acevedo C, Arzimanoglou A, Bogacz A, Cross JH, Elger CE, et al. ILAE official report: a practical clinical definition of epilepsy. Epilepsia. 2014 Apr; 55(4):475-482.

Behr C, Goltzene MA, Kosmalski G, Hirsch E, Ryvlin P. Epidemiology of epilepsy. Rev Neurol (Paris). 2016 Jan; 172(1):27-36.

Neligan A, Hauser WA, Sander JW. The epidemiology of the epilepsies. Handb Clin Neurol. 2012; 107:113-133.

Baker GA, Brooks J, Buck D, Jacoby A. The stigma of epilepsy: a European perspective. Epilepsia. 2000 Jan; 41(1):98-104.

Eadie MJ. Shortcomings in the current treatment of epilepsy. Expert Rev Neurother. 2012 Dec; 12(12):1419-1427.

Bergey GK. Neurostimulation in the treatment of epilepsy. Exp Neurol. 2013 Jun; 244:87-95.

Goldberg EM, Coulter DA. Mechanisms of epileptogenesis: a convergence on neural circuit dysfunction. Nat Rev Neurosci. 2013 May; 14(5):337-349.

McNamara JO, Huang YZ, Leonard AS. Molecular signaling mechanisms underlying epileptogenesis. Sci STKE. 2006 Oct; 2006(356): re12.

Stanojlović O, Hrncić D, Rasić A, Loncar-Stevanović H, Djuric D, Susić V. Interaction of Delta sleep-inducing peptide and valproate on metaphit audiogenic seizure model in rats. Cell Mol Neurobiol. 2007 Nov; 27(7):923-932.

Tzeng TT, Tsay HJ, Chang L, Hsu CL, Lai TH, Huang FL, et al. Caspase 3 involves in neuroplasticity, microglial activation and neurogenesis in the mice hippocampus after intracerebral injection of kainic acid. J Biomed Sci. 2013 Dec; 20:90.

Campbell BM, Charych E, Lee AW, Möller T. Kynurenines in CNS disease: regulation by inflammatory cytokines. Front Neurosci. 2014 Feb; 8:12.

Das Sarma J. Microglia-mediated neuroinflammation is an amplifier of virus-induced neuropathology. J Neurovirol 2014; 20(2): 122-136

't Hart BA, den Dunnen WF. Commentary on special issue: CNS diseases and the immune system. J Neuroimmune Pharmacol 2013; 8(4): 757-759.

Hrnčić D, Šutulović N, Grubač Ž, Rašić-Marković A, Stanojlović O. The central nervous system is not imunoprivileged: inflammation and epileptogenesis. Vojnosanit Pregl. 2016; in press.

Xu D, Miller SD, Koh S. Immune mechanisms in epileptogenesis. Front Cell Neurosci. 2013 Nov; 7:195.

Graeber MB, Li W, Rodriguez ML. Role of microglia in CNS inflammation. FEBS Lett. 2011 Dec; 585(23):3798-3805.

Azevedo FA, Carvalho LR, Grinberg LT, Farfel JM, Ferretti RE, Leite RE, et al. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J Comp Neurol. 2009 Apr; 513(5):532-541.

Pelvig DP, Pakkenberg H, Stark AK, Pakkenberg B. Neocortical glial cell numbers in human brains. Neurobiol Aging. 2008 Nov; 29(11):1754-1762.

de Lanerolle NC, Lee TS, Spencer DD. Astrocytes and epilepsy. Neurotherapeutics. 2010 Oct; 7(4):424-438.

Friedman A, Kaufer D, Heinemann U. Blood-brain barrier breakdown-inducing astrocytic transformation: novel targets for the prevention of epilepsy. Epilepsy Res. 2009 Aug; 85(2-3):142-149.

Hanisch UK, Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci. 2007 Nov; 10(11):1387-1394.

Wetherington J, Serrano G, Dingledine R. Astrocytes in the epileptic brain. Neuron. 2008 Apr; 58(2):168-178.

Devinsky O, Vezzani A, Najjar S, De Lanerolle NC, Rogawski MA. Glia and epilepsy: excitability and inflammation. Trends Neurosci. 2013 Mar; 36(3):174-184.

Lee DJ, Hsu MS, Seldin MM, Arellano JL, Binder DK. Decreased expression of the glial water channel aquaporin-4 in the intrahippocampal kainic acid model of epileptogenesis. Exp Neurol. 2012 May; 235(1):246-255.

Haj-Yasein NN, Jensen V, Vindedal GF, Gundersen GA, Klungland A, Ottersen OP, et al. Evidence that compromised K+ spatial buffering contributes to the epileptogenic effect of mutations in the human Kir4.1 gene (KCNJ10). Glia. 2011 Nov; 59(11):1635-1642.

Binder DK, Nagelhus EA, Ottersen OP. Aquaporin-4 and epilepsy. Glia. 2012 Aug; 60(8):1203-1214.

David Y, Cacheaux LP, Ivens S, Lapilover E, Heinemann U, Kaufer D, et al. Astrocytic dysfunction in epileptogenesis: consequence of altered potassium and glutamate homeostasis? J Neurosci. 2009 Aug; 29(34):10588-10599.

Boison D. Adenosine dysfunction in epilepsy. Glia. 2012 Aug; 60(8):1234-1243.

Eid T, Behar K, Dhaher R, Bumanglag AV, Lee TS. Roles of glutamine synthetase inhibition in epilepsy. Neurochem Res. 2012 Nov; 37(11):2339-2350.

Benedetti B, Matyash V, Kettenmann H. Astrocytes control GABAergic inhibition of neurons in the mouse barrel cortex. J Physiol. 2011 Mar; 589(Pt 5):1159-1172.

Vezzani A, Maroso M, Balosso S, Sanchez MA, Bartfai T. IL-1 receptor/Toll-like receptor signaling in infection, inflammation, stress and neurodegeneration couples hyperexcitability and seizures. Brain Behav Immun. 2011; 25(7):1281-1289.

Hu S, Sheng WS, Ehrlich LC, Peterson PK, Chao CC. Cytokine effects on glutamate uptake by human astrocytes. Neuroimmunomodulation. 2000; 7(3):153-159.

Löscher W, Potschka H. Drug resistance in brain diseases and the role of drug efflux transporters. Nat Rev Neurosci. 2005 Aug; 6(8):591-602.

Aronica E, Gorter JA, Jansen GH, van Veelen CW, van Rijen PC, Leenstra S, et al. Expression and cellular distribution of multidrug transporter proteins in two major causes of medically intractable epilepsy: focal cortical dysplasia and glioneuronal tumors. Neuroscience. 2003; 118(2):417-429.

Oby E, Janigro D. The blood-brain barrier and epilepsy. Epilepsia. 2006. Nov; 47(11):1761-1774.

Daneman R, Prat A. The blood-brain barrier. Cold Spring Harb Perspect Biol. 2015 Jan; 7(1):a020412.

Ballabh P, Braun A, Nedergaard M. The blood-brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis. 2004 Jun; 16(1):1-13.

Rigau V, Morin M, Rousset MC, de Bock F, Lebrun A, Coubes P, et al. Angiogenesis is associated with blood-brain barrier permeability in temporal lobe epilepsy. Brain. 2007l; 130(Pt 7):1942-1956.

Morin-Brureau M, Lebrun A, Rousset MC, Fagni L, Bockaert J, de Bock F, et al. Epileptiform activity induces vascular remodeling and zonula occludens 1 downregulation in organotypic hippocampal cultures: role of VEGF signaling pathways. J Neurosci. 2011 Jul;31(29):10677-10688.

Fabene PF, Navarro Mora G, Martinello M, Rossi B, Merigo F, Ottoboni L, et al. A role for leukocyte-endothelial adhesion mechanisms in epilepsy. Nat Med. 2008 Dec; 14(12):1377-1383.

Librizzi L, Noè F, Vezzani A, de Curtis M, Ravizza T. Seizure-induced brain-borne inflammation sustains seizure recurrence and blood-brain barrier damage. Ann Neurol. 2012 Jul; 72(1):82-90.

Heinemann U, Kaufer D, Friedman A. Blood-brain barrier dysfunction, TGFβ signaling, and astrocyte dysfunction in epilepsy. Glia. 2012 Aug; 60(8):1251-1257.

Cacheaux LP, Ivens S, David Y, Lakhter AJ, Bar-Klein G, Shapira M, et al. Transcriptome profiling reveals TGF-beta signaling involvement in epileptogenesis. J Neurosci. 2009 Jul; 29(28):8927-8935.

Johnson AC, Hammer ES, Sakkaki S, Tremble SM, Holmes GL, Cipolla MJ. Inhibition of blood-brain barrier efflux transporters promotes seizure in pregnant rats: Role of circulating factors. Brain Behav Immun. 2018 Jan; 67:13-23.

Löscher W, Potschka H. Blood-Brain Barrier Active Efflux Transporters: ATP-Binding Cassette Gene Family. NeuroRx. 2005; 2(1):86-98.

Löscher W. How to explain multidrug resistance in epilepsy? Epilepsy Curr. 2005 May-Jun; 5(3):107-112.

Di Filippo M, Chiasserini D, Gardoni F, Viviani B, Tozzi A, Giampà C, et al. Effects of central and peripheral inflammation on hippocampal synaptic plasticity. Neurobiol Dis. 2013 Apr; 52:229-236.

Rosa DV, Rezende VB, Costa BS, Mudado F, Schütze M, Torres KC, et al. Circulating CD4 and CD8 T cells expressing pro-inflammatory cytokines in a cohort of mesial temporal lobe epilepsy patients with hippocampal sclerosis. Epilepsy Res. 2016 Feb; 120:1-6.

Bezzi P, Domercq M, Brambilla L, Galli R, Schols D, De Clercq E, et al. CXCR4-activated astrocyte glutamate release via TNFalpha: amplification by microglia triggers neurotoxicity. Nat Neurosci. 2001 Jul; 4(7):702-710.

Temp FR, Marafiga JR, Milanesi LH, Duarte T, Rambo LM, Pillat MM, et al. Cyclooxygenase-2 inhibitors differentially attenuate pentylenetetrazol-induced seizures and increase of pro- and anti-inflammatory cytokine levels in the cerebral cortex and hippocampus of mice. Eur J Pharmacol. 2017 Sep; 810:15-25.

Shlosberg D, Benifla M, Kaufer D, Friedman A. Blood-brain barrier breakdown as a therapeutic target in traumatic brain injury. Nat Rev Neurol. 2010 Jul; 6(7):393-403.

Greenwood J, Etienne-Manneville S, Adamson P, Couraud PO. Lymphocyte migration into the central nervous system: implication of ICAM-1 signalling at the blood-brain barrier. Vascul Pharmacol. 2002 Jun; 38(6):315-322.

Hrnčić D, Rašić-Marković A, Djuric D, Sušić V, Stanojlović O. The role of nitric oxide in convulsions induced by lindane in rats. Food Chem Toxicol. 2011 Apr; 49(4):947-954.

Hrnčić D, Rašić-Marković A, Krstić D, Macut Đ, Đurić D, Stanojlović O. The role of nitric oxide in homocysteine thiolactone-induced seizures in adult rats. Cell Mol Neurobiol. 2010 Mar; 30(2):219-231.

Youn Y, Sung IK, Lee IG. The role of cytokines in seizures: interleukin (IL)-1β, IL-1Ra, IL-8, and IL-10. Korean J Pediatr. 2013 Jul; 56(7):271-274.

Vezzani A, Friedman A. Brain inflammation as a biomarker in epilepsy. Biomark Med. 2011 Oct; 5(5):607-614.

Ravizza T, Gagliardi B, Noé F, Boer K, Aronica E, Vezzani A. Innate and adaptive immunity during epileptogenesis and spontaneous seizures: evidence from experimental models and human temporal lobe epilepsy. Neurobiol Dis. 2008 Jan; 29(1):142-160.

Li G, Bauer S, Nowak M, Norwood B, Tackenberg B, Rosenow F, Knake S, Oertel WH, Hamer HM. Cytokines and epilepsy. Seizure. 2011 Apr; 20(3):249-256.

Vezzani A, Conti M, De Luigi A, Ravizza T, Moneta D, Marchesi F, et al. Interleukin-1beta immunoreactivity and microglia are enhanced in the rat hippocampus by focal kainate application: functional evidence for enhancement of electrographic seizures. J Neurosci. 1999 Jun;19(12):5054-5065.

Sheng JG, Boop FA, Mrak RE, Griffin WS. Increased neuronal beta-amyloid precursor protein expression in human temporal lobe epilepsy: association with interleukin-1 alpha immunoreactivity. J Neurochem. 1994 Nov; 63(5):1872-1879.

Leal B, Chaves J, Carvalho C, Bettencourt A, Brito C, Boleixa D, et al. Immunogenetic predisposing factors for mesial temporal lobe epilepsy with hippocampal sclerosis. Int J Neurosci. 2018 Apr; 128(4):305-310.

Uludag IF, Bilgin S, Zorlu Y, Tuna G, Kirkali G. Interleukin-6, interleukin-1 beta and interleukin-1 receptor antagonist levels in epileptic seizures. Seizure. 2013 Jul; 22(6):457-461.

Mélik-Parsadaniantz S, Rostène W. Chemokines and neuromodulation. J Neuroimmunol. 2008 Jul;198(1-2):62-68.

Tian DS, Peng J, Murugan M, Feng LJ, Liu JL, Eyo UB, et al. Chemokine CCL2-CCR2 Signaling Induces Neuronal Cell Death via STAT3 Activation and IL-1β Production after Status Epilepticus. J Neurosci. 2017 Aug; 37(33):7878-7892.

Objavljeno
2018/10/27
Rubrika
Mini pregledni članak