Osnovne karakteristike epileptiformnih pražnjenja izazvanih lindanom kod pacova
Sažetak
Uvod: EEG se široko primenjuje prilikom ispitivanja epilepsija. U cilju kvantitativnog ispitivanja iktalnih EEG nalaza, veliki broj matematičkih modela je razvijen tokom godina, među kojima je i Brza Furijeova Transformacija (engl. Fast Fourier Transform – FFT). Ona transformiše signal iz vremenskog domena u frekventni domen, dajući informacije o gustini spektralne snage (engl. Power Spectral Densities – PSD). Lindan je dobro poznat neurotoksični agens. koji se često koristi u studijama kao model generalizovane epilepsije. Cilj ove studije je da se kvantitativno ispitaju karakteristike iktalne EEG aktivnosti kod pacova na modelu generalizovane epilepsije indukovane lindanom.
Materijal i metode: Albino pacovi soja Wistar su korišćeni u studiji. Elektrode su hirurški implantirane nad frontalnim, parijetalnim i okcipitalnim korteksima, svake životinje u cilju registrovanjaEEG-a pre administracije lindana u konvulzivnoj dozi. EEG aparat sa 8 kanala je korišćen, kombinovan sa softverom razvijenim u laboratoriji (NeuroSciLaBG). Iktalne EEG epohe su izdvojene iz originalnog signala i FFT analiza primenjena da bi se dobile informacije o PSD u definisanim frekventim opsezima. Amplitudni histogram je korišćena da razdvoji iktalne šiljke na osnovu napona.
Rezultati: FFT analiza je dala važne informacije kada je reč o spektralnim snagama u domenu frekventnosti. Iktalni EEG je pokazao primetno raslojavanje, sa dominantnošću teta frekventnog opsega. Amplitudni histogram je pokazao da je većina šiljaka u naponskim opsezima do 250 µV, dok su šiljci višeg napona retko opservirani.
Zaključak: FFT je sposobna da pruži bitne informacije o karakteristikama iktalnih perioda. Iktalne periode izazvane lindanom karkteriše dominacija teta rimta i šiljate aktivnostu u amlitudnim opsezima do 250 µV. FFT i amplitudni histogrami bi mogli biti od kritičnog značaja u budućim farmakološkim i toksikološkim studijama.
Ključne reči: epilepsija, EEG, FFT, lindan, pacovi
Reference
Duncan JS, Sander JW, Sisodiya SM, Walker MC. Adult epilepsy. Lancet 2006;367:1087 –100.
Stephen LJ, Brodie MJ. Epilepsy in elderly people. Lancet. 2000; 355:1441–1446.
Singhi P. Infectious causes of seizures and epilepsy in the developing world. Dev Med Child Neurol. 2011;53(7):600-9
Saada F, Wang ZS, Bautista RE. In focus: The everyday lives of families of adult individuals with epilepsy. Epilepsy Behav. 2015;50:10-3.
Thompson R, Kerr M, Glynn M, Linehan C. Caring for a family member with intellectual disability and epilepsy: practical, social and emotional perspectives. Seizure 2014;23:856 –63.
Noachtar S, Rémi J. The role of EEG in epilepsy: a critical review. Epilepsy Behav. 2009;15(1):22-33.
Steinhoff BJ, Scholly J, Dentel C, Staack AM. Is routine electroencephalography (EEG) a useful biomarker for pharmacoresistant epilepsy? Epilepsia. 2013;54 Suppl 2:63-6.
Bassett L, Troncy E, Pouliot M, Paquette D, Ascah A, Authier S. Telemetry video-electroencephalography (EEG) in rats, dogs and non-human primates: methods in follow-up safety pharmacology seizure liability assessments. J Pharmacol Toxicol Methods. 2014;70(3):230-40.
Frost JD Jr, Lee CL, Hrachovy RA, Swann JW. High frequency EEG activity associated with ictal events in an animal model of infantile spasms. Epilepsia. 2011;52(1):53-62.
Smith SJ. EEG in the diagnosis, classification, and management of patients with epilepsy. J Neurol Neurosurg Psychiatry. 2005;76 Suppl 2:ii2-7.
Cascino GD. Electroencephalography and epilepsy. Journal of Epilepsy. 1996;10:16-23.
National Toxicology Program.. Lindane, hexachlorocyclohexane (technical grade), and other hexachlorocyclohexane isomers. Rep Carcinog. 2011;12:256-8.
Lal R, Saxena DM. Accumulation, metabolism, and effects of organochlorine insecticides on microorganisms. Microbiol Rev. 1982;46(1):95-127.
Solomon LM, Fahrner L, West DP. Gamma benzene hexachloride toxicity: a review. Arch Dermatol 1977;113:353–357.
Wilkinson C. Is the treatment of scabies hazardous? J R Coll Gen Pract. 1988;38(315):468-9.
Danopoulos E, Melissinos K, Katsas G. Serious poisoning by hexachlorocyclohexane. Arch Indiist Hyg Chicago 1953;8:582–587.
Portig J, Schnorr C. The potency of gamma-1,2,3,4,5,6-hexachlorohexane(lindane). Toxicology 1988;52:309–321.
Aspinwall LS, Bermudez I, King LA, Wafford KA. The interactions of hexachlorocyclohexane isomers with human gamma-aminobutyric acid(A) receptors expressed in Xenopus oocytes. J Pharmacol Exp Ther. 1997;282(3):1557-64.
Hrnčić D, Rašić-Marković A, Djuric D, Šušić V, Stanojlović O. The role of nitric oxide in convulsions induced by lindane in rats. Food and Chemical Toxicology 2011; 49: 947-954.
Vucević D, Hrncić D, Radosavljević T, et al. Correlation between electrocorticographic and motor phenomena in lindane-induced experimental epilepsy in rats. Can J Physiol Pharmacol. 2008;86(4):173-9.
Stanojlović O, Nikolić T, Hrnčić D, Radonjić N, Rašić-Marković A, MladenovićD, Petronijević N. Ontogenetic influence on rat susceptibility to lindane seizure after pretreatment with phencyclidine. Environ Toxicol Pharmacol. 2013;35(2):161-70.
Stam CJ. Nonlinear dynamical analysis of EEG and MEG: review of an emerging field. Clin Neurophysiol. 2005; 116(10):2266-301.
Campbell IG. EEG recording and analysis for sleep research. Curr Protoc Neurosci. 2009; 49(1):10-2.
Honda R, Saito Y, Okumura A, et al. Characterization of ictal slow waves in epileptic spasms. Epileptic Disord. 2015;17(4):425-35.
Tononi G, Cirelli C. Time to be SHY? Some comments on sleep and synaptic homeostasis. Neural Plast. 2012;2012:415250.
Assenza G, Di Lazzaro V. A useful electroencephalography (EEG) marker of brain plasticity: delta waves. Neural Regen Res. 2015;10(8):1216-7.
Assenza G, Zappasodi F, Squitti R, et al. Neuronal functionality assessed by magnetoencephalography is related to oxidative stress system in acute ischemic stroke. Neuroimage 2009;44:1267-1273.
Finnigan SP, Rose SE, Chalk JB. Contralateral hemisphere delta EEG in acute stroke precedes worsening of symptoms and death. Clin Neurophysiol 2008;119:1690-1694.
Green, JD; Arduini A. Hippocampal activity in arousal. J Neurophysiol. 1954;17(6): 533–57.
Greenberg JA, Burke JF, Haque R, Kahana MJ, Zaghloul KA. Decreases in theta and increases in high frequency activity underlie associative memory encoding. Neuroimage. 2015;114:257-63.
Scholz S, Schneider SL, Rose M. Differential effects of ongoing EEG beta and theta power on memory formation. PLoS One. 2017;12(2):e0171913
Dadashi M, Birashk B, Taremian F, Asgarnejad AA, Momtazi S. Effects of Increase in Amplitude of Occipital Alpha & Theta Brain Waves on Global Functioning Level of Patients with GAD. Basic Clin Neurosci. 2015;6(1):14-20.
Wang R, Wang J, Yu H, Wei X, Yang C, Deng B. Power spectral density and coherence analysis of Alzheimer's EEG. Cogn Neurodyn. 2015;9(3):291-304.
Jeong J. EEG dynamics in patients with Alzheimer’s disease. Clin Neurophysiol 2004;115:1490–1505.
Moretti DV, Fracassi C, Pievani M, et al. Increase of theta/ gamma ratio is associated with memory impairment. Clin Neurophysiol 2009 ;120:295–303.