Uloga biomarkera redoks homeostaze u nastanku i progresiji svetloćelijskog karcinoma bubrežnog parenhima

  • Smiljana Mihailović +381643320099
Ključne reči: svetloćelijski karcinom bubrežnog parenhima, redoks homeostaza, hipoksijom indukovani faktor, glutation-S transferaze, superoksid dizmutaza, glutation peroksidaza

Sažetak


Svetloćelijski karcinom bubrežnog parenhima (sKBP) predstavlja najčešći i najagresivniji podtip karcinoma bubrežnog parenhima koji se u najvećem broju slučajeva otkrije u već uznapredovaloj formi. Smatra se da bi ga trebalo posmatrati kao metaboličko oboljenje s obzirom da su za njegov nastanak ključne promene u metaboličkim putevima, kao i poremećaj redoks homeostaze. Kako su određene promene karakteristične za nastanak tumora a druge za metastatski proces, prepoznavanje metaboličkih modifikacija moglo bi da ukaže na stadijum tumorske progresije. Hipoksijom indukovani faktor, kao jedan od faktora koji kontroliše transkripciju gena koji kodiraju enzime uključene u proces glikolize, kao i faktor koji utiče na akumulaciju lipida, ima značajnu ulogu u nastanku sKBP. Pored toga, poremećena redoks homeostaza indukuje Keap1/Nrf2 signalni put, koji dalje utiče na sintezu enzima uključenih u drugu fazu detoksikacije, uključujući glutation transferaze. Njihovo pojačano prisustvo, naročito Pi klasa, može inhibirati proces programirane smrti ćelija što je esencijalno za progresiju tumora. I vodonik peroksid (H2O2)  ima ulogu u prenosu signala u redoks-senzitivnim putevima S obzirom da su superoksid dizmutaza  i glutation peroksidaza dva enzima uključena u stvaranje i razgradnju H2O2, aktivnost ovih enzima značajno utiče na nivo ovog molekula i, posledično, na sposobnost ćelija sKBP da izbegnu negativan efekat reaktivnih kiseoničnih radikala.

Reference

[1]      Hanahan, D.; Weinberg, R.A. The Hallmarks of Cancer. Cell, 2000, 100, 57–70.


[2]      Hanahan, D.; Weinberg, R.A. Hallmarks of Cancer: The next Generation. Cell, 2011, 144, 646–674.


[3]      De Berardinis, R.J.; Chandel, N.S. Fundamentals of Cancer Metabolism. Sci. Adv., 2016, 2.


[4]      Ljungberg, B.; Albiges, L.; Abu-Ghanem, Y.; Bensalah, K.; Dabestani, S.; Montes, S.F.P.; Giles, R.H.; Hofmann, F.; Hora, M.; Kuczyk, M.A.; Kuusk, T.; Lam, T.B.; Marconi, L.; Merseburger, A.S.; Powles, T.; Staehler, M.; Tahbaz, R.; Volpe, A.; Bex, A. European Association of Urology Guidelines on Renal Cell Carcinoma: The 2019 Update. Eur. Urol., 2019, 75, 799–810.


[5]      Protzel, C.; Maruschke, M.; Hakenberg, O.W. Epidemiology, Aetiology, and Pathogenesis of Renal Cell Carcinoma. Eur. Urol. Suppl., 2012, 11, 52–59.


[6]      Warren, A.Y.; Harrison, D. WHO/ISUP Classification, Grading and Pathological Staging of Renal Cell Carcinoma: Standards and Controversies. World J. Urol., 2018, 36, 1913–1926.


[7]      Qiu, B.; Ackerman, D.; Sanchez, D.J.; Li, B.; Ochocki, J.D.; Grazioli, A.; Bobrovnikova-Marjon, E.; Alan Diehl, J.; Keith, B.; Celeste Simon, M. HIF2α-Dependent Lipid Storage Promotes Endoplasmic Reticulum Homeostasis in Clear-Cell Renal Cell Carcinoma. Cancer Discov., 2016, 5, 653–667.


[8]      Wettersten, H.I.; Hakimi, A.A.; Morin, D.; Bianchi, C.; Johnstone, M.E.; Donohoe, D.R.; Trott, J.F.; Abu Aboud, O.; Stirdivant, S.; Neri, B.; Wolfert, R.; Stewart, B.; Perego, R.; Hsieh, J.J.; Weiss, R.H. Grade-Dependent Metabolic Reprogramming in Kidney Cancer Revealed by Combined Proteomics and Metabolomics Analysis. Cancer Res, 2015, 75, 2541–2552.


[9]      Chen, F.; Zhang, Y.; Şenbabaoğlu, Y.; Ciriello, G.; Yang, L.; Reznik, E.; Shuch, B.; Micevic, G.; De Velasco, G.; Shinbrot, E.; Noble, M.S.; Lu, Y.; Covington, K.R.; Xi, L.; Drummond, J.A.; Muzny, D.; Kang, H.; Lee, J.; Tamboli, P.; Reuter, V.; Shelley, C.S.; Kaipparettu, B.A.; Bottaro, D.P.; Godwin, A.K.; Gibbs, R.A.; Getz, G.; Kucherlapati, R.; Park, P.J.; Sander, C.; Henske, E.P.; Zhou, J.H.; Kwiatkowski, D.J.; Ho, T.H.; Choueiri, T.K.; Hsieh, J.J.; Akbani, R.; Mills, G.B.; Hakimi, A.A.; Wheeler, D.A.; Creighton, C.J. Multilevel Genomics-Based Taxonomy of Renal Cell Carcinoma. Cell Rep., 2016, 14, 2476–2489.


[10]    Pandey, N.; Lanke, V.; Vinod, P.K. Network-Based Metabolic Characterization of Renal Cell Carcinoma. Sci. Rep., 2020, 10, 5955.


[11]    Gordan, J.D.; Lal, P.; Dondeti, V.R.; Letrero, R.; Parekh, K.N.; Oquendo, C.E.; Greenberg, R.A.; Flaherty, K.T.; Rathmell, W.K.; Keith, B.; Simon, M.C.; Nathanson, K.L. HIF-α Effects on c-Myc Distinguish Two Subtypes of Sporadic VHL-Deficient Clear Cell Renal Carcinoma. Cancer Cell, 2008, 14, 435–446.


[12]    Sonveaux, P.; Végran, F.; Schroeder, T.; Wergin, M.C.; Verrax, J.; Rabbani, Z.N.; De Saedeleer, C.J.; Kennedy, K.M.; Diepart, C.; Jordan, B.F.; Kelley, M.J.; Gallez, B.; Wahl, M.L.; Feron, O.; Dewhirst, M.W. Targeting Lactate-Fueled Respiration Selectively Kills Hypoxic Tumor Cells in Mice. J. Clin. Invest., 2008, 118, 3930–3942.


[13]    Corrado, C.; Fontana, S. Hypoxia and HIF Signaling: One Axis with Divergent Effects. Int. J. Mol. Sci., 2020, 21, 1–17.


[14]    Paltoglou, S.; Roberts, B.J. HIF-1α and EPAS Ubiquitination Mediated by the VHL Tumour Suppressor Involves Flexibility in the Ubiquitination Mechanism, Similar to Other RING E3 Ligases. Oncogene, 2007, 26, 604–609.


[15]    Schönberger, T.; Fandrey, J.; Prost-Fingerle, K. Ways into Understanding HIF Inhibition. Cancers (Basel)., 2021, 13, 1–16.


[16]    Wang, G.L.; Jiang, B.H.; Rue, E.A.; Semenza, G.L. Hypoxia-Inducible Factor 1 Is a Basic-Helix-Loop-Helix-PAS Heterodimer Regulated by Cellular O2 Tension. Proc. Natl. Acad. Sci. U. S. A., 1995, 92, 5510–5514.


[17]    Jiang, B.H.; Zheng, J.Z.; Leung, S.W.; Roe, R.; Semenza, G.L. Transactivation and Inhibitory Domains of Hypoxia-Inducible Factor 1α: Modulation of Transcriptional Activity by Oxygen Tension. J. Biol. Chem., 1997, 272, 19253–19260.


[18]    Young, A.C.; Craven, R.A.; Cohen, D.; Taylor, C.; Booth, C.; Harnden, P.; Cairns, D.A.; Astuti, D.; Gregory, W.; Maher, E.R.; Knowles, M.A.; Joyce, A.; Selby, P.J.; Banks, R.E. Analysis of VHL Gene Alterations and Their Relationship to Clinical Parameters in Sporadic Conventional Renal Cell Carcinoma. Clin. Cancer Res., 2009, 15, 7582–7592.


[19]    Glasker, S.; Vergauwen, E.; Koch, C.A.; Kutikov, A.; Vortmeyer, A.O. Von Hippel-Lindau Disease : Current Challenges and Future Prospects. 2020, 5669–5690.


[20]    Nickerson, M.L.; Jaeger, E.; Shi, Y.; Durocher, J.A.; Mahurkar, S.; Zaridze, D.; Matveev, V.; Janout, V.; Kollarova, H.; Bencko, V.; Navratilova, M.; Szeszenia-Dabrowska, N.; Mates, D.; Mukeria, A.; Holcatova, I.; Schmidt, L.S.; Toro, J.R.; Karami, S.; Hung, R.; Gerard, G.F.; Linehan, W.M.; Merino, M.; Zbar, B.; Boffetta, P.; Brennan, P.; Rothman, N.; Chow, W.H.; Waldman, F.M.; Moore, L.E. Improved Identification of von Hippel-Lindau Gene Alterations in Clear Cell Renal Tumors. Clin. Cancer Res., 2008, 14, 4726–4734.


[21]    Loboda, A.; Jozkowicz, A.; Dulak, J. HIF-1 and HIF-2 Transcription Factors--Similar but Not Identical. Mol. Cells, 2010, 29, 435–442.


[22]    Hoefflin, R.; Harlander, S.; Schäfer, S.; Metzger, P.; Kuo, F.; Schönenberger, D.; Adlesic, M.; Peighambari, A.; Seidel, P.; Chen, C. yi; Consenza-Contreras, M.; Jud, A.; Lahrmann, B.; Grabe, N.; Heide, D.; Uhl, F.M.; Chan, T.A.; Duyster, J.; Zeiser, R.; Schell, C.; Heikenwalder, M.; Schilling, O.; Hakimi, A.A.; Boerries, M.; Frew, I.J. HIF-1α and HIF-2α Differently Regulate Tumour Development and Inflammation of Clear Cell Renal Cell Carcinoma in Mice. Nat. Commun., 2020, 11.


[23]    Akhtar, M.; Al-Bozom, I.A.; Hussain, T. Al. Molecular and Metabolic Basis of Clear Cell Carcinoma of the Kidney. Adv. Anat. Pathol., 2018, 25, 189–196.


[24]    Masson, N.; Ratcliffe, P.J. Hypoxia Signaling Pathways in Cancer Metabolism: The Importance of Co-Selecting Interconnected Physiological Pathways. Cancer Metab., 2014, 2, 1–17.


[25]    Mailloux, R.J. An Update on Methods and Approaches for Interrogating Mitochondrial Reactive Oxygen Species Production. Redox Biol., 2021, 45, 102044.


[26]    Sosa, V.; Moliné, T.; Somoza, R.; Paciucci, R.; Kondoh, H.; LLeonart, M.E. Oxidative Stress and Cancer: An Overview. Ageing Res. Rev., 2013, 12, 376–390.


[27]    Basak, P.; Sadhukhan, P.; Sarkar, P.; Sil, P.C. Perspectives of the Nrf-2 Signaling Pathway in Cancer Progression and Therapy. Toxicol. Reports, 2017, 4, 306–318.


[28]    Krajka-Kuźniak, V.; Paluszczak, J.; Baer-Dubowska, W. The Nrf2-ARE Signaling Pathway: An Update on Its Regulation and Possible Role in Cancer Prevention and Treatment. Pharmacol. Reports, 2017, 69, 393–402.


[29]    Namani, A.; Li, Y.; Wang, X.J.; Tang, X. Modulation of NRF2 Signaling Pathway by Nuclear Receptors: Implications for Cancer. Biochim. Biophys. Acta - Mol. Cell Res., 2014, 1843, 1875–1885.


[30]    Tong, K.I.; Padmanabhan, B.; Kobayashi, A.; Shang, C.; Hirotsu, Y.; Yokoyama, S.; Yamamoto, M. Different Electrostatic Potentials Define ETGE and DLG Motifs as Hinge and Latch in Oxidative Stress Response. Mol. Cell. Biol., 2007, 27, 7511–7521.


[31]    Bensasson, R. V.; Zoete, V.; Dinkova-Kostova, A.T.; Talalay, P. Two-Step Mechanism of Induction of the Gene Expression of a Prototypic Cancer-Protective Enzyme by Diphenols. Chem. Res. Toxicol., 2008, 21, 805–812.


[32]    Fourquet, S.; Guerois, R.; Biard, D.; Toledano, M.B. Activation of NRF2 by Nitrosative Agents and H2O2 Involves KEAP1 Disulfide Formation. J. Biol. Chem., 2010, 285, 8463–8471.


[33]    Hong, F.; Freeman, M.L.; Liebler, D.C. Identification of Sensor Cysteines in Human Keap1 Modified by the Cancer Chemopreventive Agent Sulforaphane. Chem. Res. Toxicol., 2005, 18, 1917–1926.


[34]    Chartoumpekis, D.V.; Wakabayashi, N.; Kensler, T.W. Keap1/Nrf2 Pathway in the Frontiers of Cancer and Non-Cancer Cell Metabolism. Biochem. Soc. Trans., 2015, 43, 639–644.


[35]    Pelicano, H.; Carney, D.; Huang, P. ROS Stress in Cancer Cells and Therapeutic Implications. Drug Resist. Updat., 2004, 7, 97–110.


[36]    Fabrizio, F.P.; Costantini, M.; Copetti, M.; Sparaneo, A.; Fontana, A.; Poeta, L.; Gallucci, M.; Sentinelli, S.; Graziano, P.; Parente, P.; Pompeo, V.; De, L.; Simone, G.; Papalia, R.; Picardo, F.; Balsamo, T.; Paranita, F.; Muscarella, L.A.; Fazio, V. Keap1/Nrf2 Pathway in Kidney Cancer: Frequent Methylation of Keap1 Gene Promoter in Clear Renal Cell Carcinoma. Oncotarget, 2016, 8, 11187–11198.


[37]    Reszka, E.; Jablonowski, Z.; Wieczorek, E.; Jablonska, E.; Krol, M.B.; Gromadzinska, J.; Grzegorczyk, A.; Sosnowski, M.; Wasowicz, W. Polymorphisms of NRF2 and NRF2 Target Genes in Urinary Bladder Cancer Patients. J. Cancer Res. Clin. Oncol., 2014, 140, 1723–1731.


[38]    Mihailovic, S.; Coric, V.; Radic, T.; Radojevic, A.S.; Matic, M.; Dragicevic, D.; Djokic, M.; Vasic, V.; Dzamic, Z.; Simic, T.; Hadzi-djokic, J.; Ercegovac, M.P. The Association of Polymorphisms in Nrf2 and Genes Involved in Redox Homeostasis in the Development and Progression of Clear Cell Renal Cell Carcinoma. 2021, 2021.


[39]    Ji, S.; Xiong, Y.; Zhao, X.; Liu, Y.; Yu, L.Q. Effect of the Nrf2-Are Signaling Pathway on Biological Characteristics and Sensitivity to Sunitinib in Renal Cell Carcinoma. Oncol. Lett., 2019, 17, 5175–5186.


[40]    Pljesa-Ercegovac, M.; Savic-Radojevic, A.; Coric, V.; Radic, T.; Simic, T. Glutathione Transferase Genotypes May Serve as Determinants of Risk and Prognosis in Renal Cell Carcinoma. BioFactors, 2020, 46, 229–238.


[41]    Hayes, J.D.; McMahon, M. NRF2 and KEAP1 Mutations: Permanent Activation of an Adaptive Response in Cancer. Trends Biochem. Sci., 2009, 34, 176–188.


[42]    Bartolini, D.; Galli, F. The Functional Interactome of GSTP: A Regulatory Biomolecular Network at the Interface with the Nrf2 Adaption Response to Oxidative Stress. J. Chromatogr. B Anal. Technol. Biomed. Life Sci., 2016, 1019, 29–44.


[43]    Meitzler, J.L.; Konaté, M.M.; Doroshow, J.H. Hydrogen Peroxide-Producing NADPH Oxidases and the Promotion of Migratory Phenotypes in Cancer. Arch. Biochem. Biophys., 2019, 675, 108076.


[44]    Figueira, T.R.; Barros, M.H.; Camargo, A.A.; Castilho, R.F.; Ferreira, J.C.B.; Kowaltowski, A.J.; Sluse, F.E.; Souza-Pinto, N.C.; Vercesi, A.E. Mitochondria as a Source of Reactive Oxygen and Nitrogen Species: From Molecular Mechanisms to Human Health. Antioxidants Redox Signal., 2013, 18, 2029–2074.


[45]    Wang, Y.; Branicky, R.; Noë, A.; Hekimi, S. Superoxide Dismutases: Dual Roles in Controlling ROS Damage and Regulating ROS Signaling. J. Cell Biol., 2018, 217, 1915–1928.


[46]    Kumar, A.; Vaish, M.; Karuppagounder, S.S.; Gazaryan, I.; Cave, J.W.; Starkov, A.A.; Anderson, E.T.; Zhang, S.; Pinto, J.T.; Rountree, A.M.; Wang, W.; Sweet, I.R.; Ratan, R.R. HIF1α Stabilization in Hypoxia Is Not Oxidant-Initiated. Elife, 2021, 10, 1–23.


[47]    Jobim, M.L.; Azzolin, V.F.; Assmann, C.E.; Morsch, V.M.M.; da Cruz, I.B.M.; de Freitas Bauermann, L. Superoxide-Hydrogen Peroxide Imbalance Differentially Modulates the Keratinocytes Cell Line (HaCaT) Oxidative Metabolism via Keap1-Nrf2 Redox Signaling Pathway. Mol. Biol. Rep., 2019, 46, 5785–5793.


[48]    Miller, A.F. Superoxide Dismutases: Ancient Enzymes and New Insights. FEBS Lett., 2012, 586, 585–595.


[49]    Raghunath, A.; Sundarraj, K.; Nagarajan, R.; Arfuso, F.; Bian, J.; Kumar, A.P.; Sethi, G.; Perumal, E. Antioxidant Response Elements: Discovery, Classes, Regulation and Potential Applications. Redox Biol., 2018, 17, 297–314.


[50]    Hart, P.C.; Mao, M.; Abreu, A.L. de; Fricano, K.A.-; Ekoue, D.N.; Ganini, D.; Kajdacsy-Balla, A.; Diamond, A.M.; Minshall, R.D.; Consolaro, M.E.L.; Santos, J.H.; Bonini, M.G. MnSOD Upregulation Sustains the Warburg Effect via Mitochondrial ROS and AMPK-Dependent Signaling in Cancer Peter. Nat. Commun., 2015, 6, 6053.


[51]    Dasgupta, J.; Subbaram, S.; Connor, K.; Rodriguez, A.; Tirosh, O.; Beckman, J.; Jourd’Heuil, D.; Melendez, J. Manganese Superoxide Dismutase Protects from TNF-?–Induced Apoptosis by Increasing the Steady-State Production of H2O2. Antioxidants Redox Signal., 2006, 8, 1295–1305.


[52]    Ekoue, D.; He, C.; Diamond, A.; Bonini, M. Manganese Superoxide Dismutase and Glutathione Peroxidase-1 Contribute to the Rise and Fall of Mitochondrial Reactive Oxygen Species Which Drive Oncogenesis. Biochim. Biophys. Acta, 2017, 1858, 628–632.


[53]    Lubos, E.; Loscalzo, J.; Handy, D.E. Glutathione Peroxidase-1 in Health and Disease: From Molecular Mechanisms to Therapeutic Opportunities. Antioxidants Redox Signal., 2011, 15, 1957–1997.


[54]    Brigelius-Flohé, R.; Kipp, A. Glutathione Peroxidases in Different Stages of Carcinogenesis. Biochim. Biophys. Acta - Gen. Subj., 2009, 1790, 1555–1568.


[55]    Cheng, Y.; Xu, T.; Li, S.; Ruan, H. GPX1, a Biomarker for the Diagnosis and Prognosis of Kidney Cancer, Promotes the Progression of Kidney Cancer. Aging (Albany. NY)., 2019, 11, 12165–12176.

Objavljeno
2023/02/06
Rubrika
Mini pregledni članak