/ VARIJACIJE U BROJU KOPIJA NA HROMOZOMU 15 DETEKTOVANE MOLEKULARNOM KARIOTIPIZACIJOM KOD PACIJENATA SA RAZVOJNIM KAŠNJENJEM I UROĐENIM ANOMALIJAMA

/

  • Branko Beronja Medicinski fakultet Univerziteta u Beogradu - student
  • Ana Đuranović
Ključne reči: varijacije u broju kopija, molekularna kariotipizacija, hromozom 15, razvojno kašnjenje

Sažetak


Uvod: Globalno razvojno kašnjenje (GKR) i urođene anomalije predstavljaju heterogenu grupu medicinskih stanja koja mogu imati poznatu genetičku etiologiju. Molekularna kariotipizacija je metoda izbora za detekciju varijacija u broju kopija (eng. copy number variation, CNV) i predstavlja test prve linije kod pacijenata sa GKR i urođenim anomalijama, sa prosečnim dijagnostičkim doprinosom od 15-20%. Hromozom 15 (H15) je jedan od hromozoma na kome se CNV najčešće javljaju.

Cilj: rada je da analiziramo sve detektovane ne-polimorfne (značajne) CNV sa H15 na uzorku pacijenata sa GKR i/ili urođenim anomalijama, procenimo njihov udeo u ukupnoj stopi detekcije CNV različitih klasa patogenosti i prikažemo nekoliko ilustrativnih slučajeva.

Materijal i metode: Na ukupnom uzorku od 350 pacijenata koji su analizirani tehnikom molekularne kariotipizacije izdvojena su 92 sa detektovanim značajnim CNV. Nakon toga su analizirani svi pacijenti sa varijantama na H15 koje su dalje klasifikovane prema tipu, veličini i kliničkom značaju.

Rezultati: Kod 11 pacijenata je detektovana bar jedna značajna CNV na hromozomu 15, što čini 3,15% od ukupnog uzorka i 11,96%. na uzorku pacijenata koji su imali značajnu CNV bilo koje lokalizacije. Kod 72,7% ispitanika CNV je opisana kao patogena ili verovatno patogena (klinički značajna, kzCNV), a kod 27,3% kao varijanta nepoznatog značaja. U ukupnoj stopi detekcije kzCNV sa svih hromozoma (15,4%) udeo varijacija sa H15 je iznosio 17,2% .

Zaključak: Udeo kzCNV na hromozomu 15 u ukupnom dijagnostičkom doprinosu molekularne kariotipizacije kod pacijenata sa razvojnim kašnjenjem i kongenitalnim anomalijama iznosi 17,2%, što potvrđuje njihov značajan udeo u etiologiji ovih poremećaja.

Reference


  1. Belanger SA, Caron J. Evaluation of the child with global developmental delay and intellectual disability. Paediatr Child Health. 2018;23(6):403-19.

  2. Jones KL, Adam MP. Evaluation and diagnosis of the dysmorphic infant. Clin Perinatol. 2015;42(2):243-61, vii-viii.

  3. Moeschler JB, Shevell M, Committee on G. Comprehensive evaluation of the child with intellectual disability or global developmental delays. Pediatrics. 2014;134(3):e903-18.

  4. Rosenfeld JA, Patel A. Chromosomal Microarrays: Understanding Genetics of Neurodevelopmental Disorders and Congenital Anomalies. J Pediatr Genet. 2017;6(1):42-50.

  5. Miller DT, Adam MP, Aradhya S, Biesecker LG, Brothman AR, Carter NP, et al. Consensus statement: chromosomal microarray is a first-tier clinical diagnostic test for individuals with developmental disabilities or congenital anomalies. Am J Hum Genet. 2010;86(5):749-64.

  6. Ceylan AC, Citli S, Erdem HB, Sahin I, Acar Arslan E, Erdogan M. Importance and usage of chromosomal microarray analysis in diagnosing intellectual disability, global developmental delay, and autism; and discovering new loci for these disorders. Mol Cytogenet. 2018;11:54.

  7. Cooper GM, Coe BP, Girirajan S, Rosenfeld JA, Vu TH, Baker C, et al. A copy number variation morbidity map of developmental delay. Nat Genet. 2011;43(9):838-46.

  8. Butler MG. Clinical and genetic aspects of the 15q11.2 BP1-BP2 microdeletion disorder. J Intellect Disabil Res. 2017;61(6):568-79.

  9. Angulo MA, Butler MG, Cataletto ME. Prader-Willi syndrome: a review of clinical, genetic, and endocrine findings. J Endocrinol Invest. 2015;38(12):1249-63.

  10. Miller NL, Wevrick R, Mellon PL. Necdin, a Prader-Willi syndrome candidate gene, regulates gonadotropin-releasing hormone neurons during development. Hum Mol Genet. 2009;18(2):248-60.

  11. Buiting K, Williams C, Horsthemke B. Angelman syndrome - insights into a rare neurogenetic disorder. Nat Rev Neurol. 2016;12(10):584-93.

  12. Bossuyt SNV, Punt AM, de Graaf IJ, van den Burg J, Williams MG, Heussler H, et al. Loss of nuclear UBE3A activity is the predominant cause of Angelman syndrome in individuals carrying UBE3A missense mutations. Hum Mol Genet. 2021;30(6):430-42.

  13. Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988;16(3):1215.

  14. Kearney HM, Thorland EC, Brown KK, Quintero-Rivera F, South ST, Working Group of the American College of Medical Genetics Laboratory Quality Assurance C. American College of Medical Genetics standards and guidelines for interpretation and reporting of postnatal constitutional copy number variants. Genet Med. 2011;13(7):680-5.

  15. Riggs ER, Andersen EF, Cherry AM, Kantarci S, Kearney H, Patel A, et al. Technical standards for the interpretation and reporting of constitutional copy-number variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics (ACMG) and the Clinical Genome Resource (ClinGen). Genet Med. 2020;22(2):245-57.

  16. Silva M, de Leeuw N, Mann K, Schuring-Blom H, Morgan S, Giardino D, et al. European guidelines for constitutional cytogenomic analysis. Eur J Hum Genet. 2019;27(1):1-16.

  17. Nowakowska B. Clinical interpretation of copy number variants in the human genome. J Appl Genet. 2017;58(4):449-57.

  18. Spagnoli C, Schiavoni S, Rizzi S, Salerno GG, Frattini D, Koskenvuo J, et al. SPG6 (NIPA1 variant): A report of a case with early-onset complex hereditary spastic paraplegia and brief literature review. J Clin Neurosci. 2021;94:281-5.

  19. van Bon BW, Mefford HC, Menten B, Koolen DA, Sharp AJ, Nillesen WM, et al. Further delineation of the 15q13 microdeletion and duplication syndromes: a clinical spectrum varying from non-pathogenic to a severe outcome. J Med Genet. 2009;46(8):511-23.

  20. Chen CP, Lin SP, Chern SR, Wu PS, Chen YN, Chen SW, et al. Molecular cytogenetic characterization of an inv dup(15) chromosome presenting as a small supernumerary marker chromosome associated with the inv dup(15) syndrome. Taiwan J Obstet Gynecol. 2016;55(5):728-32.

  21. Rump P, Dijkhuizen T, Sikkema-Raddatz B, Lemmink HH, Vos YJ, Verheij JB, et al. Drayer's syndrome of mental retardation, microcephaly, short stature and absent phalanges is caused by a recurrent deletion of chromosome 15(q26.2-->qter). Clin Genet. 2008;74(5):455-62.

  22. Benbouchta Y, De Leeuw N, Amasdl S, Sbiti A, Smeets D, Sadki K, et al. 15q26 deletion in a patient with congenital heart defect, growth restriction and intellectual disability: case report and literature review. Ital J Pediatr. 2021;47(1):188.

  23. Okubo Y, Siddle K, Firth H, O'Rahilly S, Wilson LC, Willatt L, et al. Cell proliferation activities on skin fibroblasts from a short child with absence of one copy of the type 1 insulin-like growth factor receptor (IGF1R) gene and a tall child with three copies of the IGF1R gene. J Clin Endocrinol Metab. 2003;88(12):5981-8.

  24. Walenkamp MJ, de Muinck Keizer-Schrama SM, de Mos M, Kalf ME, van Duyvenvoorde HA, Boot AM, et al. Successful long-term growth hormone therapy in a girl with haploinsufficiency of the insulin-like growth factor-I receptor due to a terminal 15q26.2->qter deletion detected by multiplex ligation probe amplification. J Clin Endocrinol Metab. 2008;93(6):2421-


 

Objavljeno
2024/02/22
Rubrika
Originalni naučni članak