EFEKTI DUGOTRAJNE PRIMENE ANTIPSIHOTIKA NA ZASTUPLJENOST ENKEFALIN-IMUNOREAKTIVNIH NEURONA U MOZGU PACOVA PERINATALNO TRETIRANIH FENCIKLIDINOM

  • Anja Kompanijec MFUB
  • Bojan Korica MFUB
  • Asist. dr Institut za medicinsku i klinicku biohemiju, Medicinski fakultet, Univerzitet u Beogradu
Ključne reči: shizofrenija, fenciklidin, haloperidol, risperidon, enkefalin

Sažetak


Uvod: Shizofrenija je hronično mentalno oboljenje koje pogađa oko 1% populacije. Fenciklidinski animalni model shizofrenije uključuje perinatalnu primenu fenciklidina (PCP) i zasnovan je na glutamatnoj teoriji o razvoju ove psihoze. U terapiji shizofrenije koriste se tipični i atipični antipsihotika. Enkefalin je neuropeptid sa modulatornim uticajajem na neurotransmisiju i ulogom u ispoljavanju simptoma shizofrenije.

Cilj: Cilj istraživanja bio je ispitivanje efekata hronične primene haloperidola i risperidona na zastupljenost enkefalin-imunoreaktivnih neruona u mozgu  pacova perinatalno tretiranih fenciklidinom.

Materijali i metode: Eksperimentalni pacovi Wistar soja supkutano su tretirani 3, 6, 9 i 12. postnatalnog dana (PN), PCP-om (10 mg/kg) ili NaCl-om, a od PN35 do PN100 dana, dobijali su oralno haloperidol (Hal, 3 mg/kg/dan), risperidona (Ris, 1 mg/kg/dan) ili vodu za piće. Životinje su bile podeljene u šest grupa. Kontrolna grupa primala je NaCl i vodu, PCP grupa primala je PCP i vodu. Hal grupa primala je NaCl i haloperidol, dok je PCP-Hal grupa dobijala PCP i haloperidol. Grupa Ris primala je NaCl i risperidon, a grupa PCP-Ris primala je PCP i risperidon. Nakon žrtvovanja PN100 dana,u presecima korteksa, hipokampusa, strijatuma i septalne regije određivan je broj enkefalin-imunoreaktivnih neurona metodom imunohistohemije.

Rezultati: U hipokampusu, u PCP grupi uočeno je značajno povećanje broja enkefalin-imunoreaktivnih neurona u odnosu na kontrolnu grupu, dok antipsihotici nisu izazvali statistički značajne promene. Haloperidol je u strijatumu doveo do povećanja površine prekrivene enkefalin-imunoreaktivnim neuronima u odnosu na kontrolnu grupu, dok su u septalnoj regiji i haloperidol i risperidon antipsihotici prouzrokovali smanjenje  površine prekrivene enkefalin-imunoreaktivnim neuronima u odnosu na površinu u kontroloj grupi.

Zaključak: Dugotrajna primena antipsihotika dovela je do region-specifičnih promena u zastupljenosti enkefalin-imunoreaktivnih neurona u mozgu pacova perinatalno tretiranih PCP-om.

Reference


  1. Jablensky A. Epidemiology of schizophrenia: the global burden of disease and disability. Eur Arch Psychiatry Clin Neurosci. 2000;250:274-85.

  2. Harrison PJ. The neuropathology of schizophrenia. A critical review of the data and their interpretation. 1999:593-624.

  3. Osimo EF, Beck K, Reis Marques T, Howes OD. Synaptic loss in schizophrenia: a meta-analysis and systematic review of synaptic protein and mRNA measures. Mol Psychiatry. 2018 Mar 6. doi: 10.1038/s41380-018-0041-5.

  4. Lakić A, Munjiza M, Timotijević I. Shizofrenija. U: Gašić Jašović M, Toševski Lečić. D. Urednici. Psihijatrija, udžbenik za studente medicine. Beograd, Univerzitet u Beogradu. Medicinski fakultet; 2014. p. 112-128.

  5. Bubeníková-Valesová V, Horácek J, Vrajová M, Höschl C. Models of schizophrenia in humans and animals based on inhibition of NMDA receptors. Neurosci Biobehav Rev. 2008;32:1014-23

  6. Morris BJ, Cochran SM, Pratt JA. PCP: from pharmacology modeling schizophrenia. Curr Opin Pharmacol. 2005;5:101-6. 9.

  7. Grayson, B., Barnes, S. A., Markou, A., Piercy, C., Podda, G., & Neill, J. C. (2015). Postnatal Phencyclidine (PCP) as a Neurodevelopmental Animal Model of Schizophrenia Pathophysiology and Symptomatology: A Review. Current Topics in Behavioral Neurosciences, 403–428. doi:10.1007/7854_2015_403

  8. Agarwal SM, Hahn MK, Taylor VH, Kowalchuk C, Costa-Dookhan KA, Remington GJ, et al. Antipsychotics, Metabolic Adverse Effects, and Cognitive Function in Schizophrenia. Front Psychiatry. 2018;9(December):1–12

  9. Crossley NA, Constante M, McGuire P, Power P. Efficacy of atypical v. typical antipsychotics in the treatment of early psychosis: Meta-analysis. Br J Psychiatry. 2010;196(6):434–9.

  10. Takahashi, A. (2016). Handbook of Hormones, 55–e7A–2. doi:10.1016/b978-0-12-801028-0.00117-3

  11. Henry MS, Gendron L, Tremblay ME, Drolet G (2017). "Enkephalins: Endogenous Analgesics with an Emerging Role in Stress Resilience". review. Neural Plasticity. 2017: 1546125. doi:10.1155/2017/1546125. PMC 5525068. PMID 28781901.

  12. Trezza V., Damsteegt R., Achterberg E.M., Vanderschuren L. Nucleus accumbens μ-opioid receptors mediate social reward. J. Neurosci. 2011;31:6362–6370DOIoi: 10.1523/JNEUROSCI.5492-10.2011.

  13. Javitt DC. Glutamate and Schizophrenia: Phencyclidine, N‐Methyl‐d‐Aspartate Receptors, and Dopamine–Glutamate Interactions. 2007;78(06):69–108.

  14. Hanania, T., & Johnson, K. M. (1999). “Regulation of NMDA-stimulated [14C]GABA and [3H]acetylcholine release by striatal glutamate and dopamine receptors“. Brain   Research, 844(1-2), 106–117. doi:10.1016/s0006-8993(99)01869-7

  15. Liao D, Lin H, Law PY, Loh HH (February 2005). "Mu-opioid receptors modulate the stability of dendritic spines". Proc. Natl. Acad. Sci. U.S.A. 102 (5): 1725–30. Bibcode:2005PNAS..102.1725L. doi:10.1073/pnas.0406797102. JSTOR 3374498. PMC 545084. PMID 15659552

  16. Börner C., Kraus J., Schröder H., Ammer H., Höllt V. Transcriptional regulation of the human μ-opioid receptor gene by interleukin-6. Mol. Pharmacol. 2004;66:1719–1726. doi: 10.1124/mol.104.003806.

  17. Lidsky T.I. Reevaluation of the mesolimbic hypothesis of antipsychotic drug action. Schizophr. Bull. 1995;21:67–74.

  18. Prensa L, Giménez-Amaya JM, Parent A (Nov 1999). "Chemical heterogeneity of the striosomal compartment in the human striatum". J Comp Neurol. 413 (4): 603–18. doi:10.1002/(SICI)1096-9861(19991101)413:4<603::AID-CNE9>3.0.CO;2-K. PMID 10495446.

  19. Yager LM, Garcia AF, Wunsch AM, Ferguson SM (August 2015). "The ins and outs of the striatum: Role in drug addiction". Neuroscience. 301: 529–541. doi:10.1016/j.neuroscience.2015.06.033. PMC 4523218. PMID 26116518.

  20. Broom DC, Jutkiewicz EM, Rice KC, Traynor JR, Woods JH (Sep 2002). "Behavioral effects of delta-opioid receptor agonists: potential antidepressants?". Japanese Journal of Pharmacology. 90 (1): 1–6. doi:10.1254/jjp.90.1. PMID 12396021.

  21. Torregrossa MM, Jutkiewicz EM, Mosberg HI, Balboni G, Watson SJ, Woods JH (Jan 2006). "Peptidic delta opioid receptor agonists produce antidepressant-like effects in the forced swim test and regulate BDNF mRNA expression in rats". Brain Research. 1069 (1): 172–81. doi:10.1016/j.brainres.2005.11.005. PMC 1780167. PMID 16364263.

  22. Huang EJ, Reichardt LF (2001). "Neurotrophins: roles in neuronal development and function". Annual Review of Neuroscience. 24: 677–736. doi:10.1146/annual.neuro.24.1.677. PMC 2758233. PMID 11520916.

  23. Caldeira MV, Melo CV, Pereira DB, Carvalho R, Correia SS, Backos DS, Carvalho AL, Esteban JA, Duarte CB (April 2007). "Brain-derived neurotrophic factor regulates the expression and synaptic delivery of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor subunits in hippocampal neurons". The Journal of Biological Chemistry. 282 (17): 12619–28. doi:10.1074/jbc.M700607200. PMID 17337442

  24. Slack SE, Pezet S, McMahon SB, Thompson SW, Malcangio M (October 2004). "Brain-derived neurotrophic factor induces NMDA receptor subunit one phosphorylation via ERK and PKC in the rat spinal cord". The European Journal of Neuroscience. 20 (7): 1769–78. doi:10.1111/j.1460-9568.2004.03656.x. PMID 15379998

  25. Connor M, Vaughan CW, Chieng B, Christie MJ (1996). "Nociceptin receptor coupling to a potassium conductance in rat locus coeruleus neurons in vitro". British Journal of Pharmacology. 119 (8): 1614–8. doi:10.1111/j.1476-5381.1996.tb16080.x. PMC 1915781. PMID 8982509.

Objavljeno
2023/11/29
Rubrika
Originalni naučni članak