ZNAČAJ SERUMSKOG AMILOIDA A ZA TOK I ISHOD SARS-COV-2 INFEKCIJE
Sažetak
Novi koronavirus, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), veoma brzo je postao globalna pretnja nakon što se ovaj virus proširio na sve kontinente unutar samo nekoliko meseci. Tokom sledeće tri godine inificirano je preko 646.6 miliona ljudi od čega je preko 6.6 miliona umrlo. Prethodno nepoznata bolest, Coronavirus Disease 19 (COVID-19) je postao subjekat intenzivnog istraživanja. S obzirom na različite kliničke manifestacije COVID-19 uz mogućnost razvoja teških oblika bolesti sa smrtnim ishodom, postalo je jasno da je neophodno bolje razumevanje patogeneze, manifestacija i komplikacija ove bolesti. Istraživanje reakcije akutne faze, kao dela imunskog odgovora na prisustvo infekcije, se pokazalo ko veoma korisno. U ovu svrhu je ispitivan serumski amiloid A (SAA), kao jedan od reaktanata akutne faze koji primarno sintetišu hepatociti kao odgovor na prisustvo proinflamatornih citokina. Pronađeno je da su povišeni nivoi SAA nezavisni faktori ne samo za težinu pneumonije, nego i za pojavu gastrointestinalnih manifestacija i oštećenje jetre tokom COVID-19, ali i jedan od faktora odgovornih za koagulopatiju povezanu sa COVID-19. Takođe je pokazano da su nivoi SAA u direktnoj proporciji sa težinom kliničke slike i lošijom prognozom, odnosno da su značajno viši kod pacijenata sa teškim oblikom infekcije. Vrednosti SAA su bile značajno više kod obolelih od COVID-19 sa pridruženim hroničnim bolestima kao što su dijabetes melitus, hipertenzija, cerebrovaskularne bolesti i gojaznost, pri čemu su ovi komorbiditeti prethodno već prepoznati kao nezavisni faktori rizika za teški oblik bolesti i lošiju prognozu. Pacijenti umrli od COVID-19 su imali više prosečne vrednosti SAA u odnosu na one koji su preživeli. Na osnovu do sada objavljenih studija o vezi između SSA i lošijih ishoda COVID-19 bolesti, neophodna su dalja istraživanja koja će pomoći u boljem sagledavanju njegove uloge u patogenezi SARS-CoV-2 infekcije i mogućnosti njegove upotrebe za predikciju lošijih ishoda kod osoba sa COVID-19 bolešću.
Reference
1. ProMED-mail. Undiagnosed pneumonia - China (Hubei): Request for information [Internet]. 2019 [cited 2023 Jan 6]. Available from: https://promedmail.org/promed-post/?id=6864153
2. Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020 Feb 20;382(8):727–33.
3. Gorbalenya AE, Baker SC, Baric RS, de Groot RJ, Drosten C, Gulyaeva AA, et al. The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2. Nat Microbiol. 2020 Apr;5(4):536–44.
4. World Health Organization. WHO Director-General’s remarks at the media briefing on 2019-nCoV on 11 February 2020 [Internet]. [cited 2022 Dec 12]. Available from: https://www.who.int/director-general/speeches/detail/who-director-general-s-remarks-at-the-media-briefing-on-2019-ncov-on-11-february-2020
5. World Health Organization. WHO Director-General’s opening remarks at the media briefing on COVID-19 - 11 March 2020 [Internet]. 2020 [cited 2022 Dec 30]. Available from: https://www.who.int/director-general/speeches/detail/who-director-general-s-opening-remarks-at-the-media-briefing-on-covid-19---11-march-2020
6. COVID-19 Map [Internet]. Johns Hopkins Coronavirus Resource Center. [cited 2022 Dec 7]. Available from: https://coronavirus.jhu.edu/map.html
7. Amin R, Sohrabi MR, Zali AR, Hannani K. Five consecutive epidemiological waves of COVID-19: a population-based cross-sectional study on characteristics, policies, and health outcome. BMC Infect Dis. 2022 Dec 5;22(1):906.
8. Ssentongo P, Ssentongo AE, Voleti N, Groff D, Sun A, Ba DM, et al. SARS-CoV-2 vaccine effectiveness against infection, symptomatic and severe COVID-19: a systematic review and meta-analysis. BMC Infect Dis. 2022 May 7;22(1):439.
9. Sah P, Fitzpatrick MC, Zimmer CF, Abdollahi E, Juden-Kelly L, Moghadas SM, et al. Asymptomatic SARS-CoV-2 infection: a systematic review and meta-analysis. Proc Natl Acad Sci. 2021 Aug 24;118(34):e2109229118.
10. Hassan SA, Sheikh FN, Jamal S, Ezeh JK, Akhtar A. Coronavirus (COVID-19): A review of clinical features, diagnosis, and treatment. Cureus. 12(3):e7355.
11. Kaeuffer C, Hyaric CL, Fabacher T, Mootien J, Dervieux B, Ruch Y, et al. Clinical characteristics and risk factors associated with severe COVID-19: prospective analysis of 1,045 hospitalised cases in North-Eastern France, March 2020. Eurosurveillance. 2020 Dec 3;25(48):2000895.
12. Gruys E, Toussaint MJM, Niewold TA, Koopmans SJ. Acute phase reaction and acute phase proteins. J Zhejiang Univ Sci B. 2005 Nov;6(11):1045–56.
13. Prabhala S, Sivakoti S, Sahoo B. Utility of acute-phase reactants testing in clinical practice. Indian J Community Fam Med. 2021 Jan 1;7(1):12.
14. Markanday A. Acute phase reactants in infections: evidence-based review and a guide for clinicians. Open Forum Infect Dis. 2015 Sep 1;2(3):ofv098.
15. Yitbarek GY, Walle Ayehu G, Asnakew S, Ayele FY, Bariso Gare M, Mulu AT, et al. The role of C-reactive protein in predicting the severity of COVID-19 disease: a systematic review. SAGE Open Med. 2021 Jan 1;9:20503121211050756.
16. Kaushal K, Kaur H, Sarma P, Bhattacharyya A, Sharma DJ, Prajapat M, et al. Serum ferritin as a predictive biomarker in COVID-19. A systematic review, meta-analysis and meta-regression analysis. J Crit Care. 2022 Feb 1;67:172–81.
17. Potere N, Buono MGD, Caricchio R, Cremer PC, Vecchié A, Porreca E, et al. Interleukin-1 and the NLRP3 inflammasome in COVID-19: Pathogenetic and therapeutic implications. eBioMedicine. 2022 Nov 1;85:104299.
18. Sabaka P, Koščálová A, Straka I, Hodosy J, Lipták R, Kmotorková B, et al. Role of interleukin 6 as a predictive factor for a severe course of COVID-19: Retrospective data analysis of patients from a long-term care facility during COVID-19 outbreak. BMC Infect Dis. 2021 Mar 29;21(1):308.
19. Tong-Minh K, van der Does Y, Engelen S, de Jong E, Ramakers C, Gommers D, et al. High procalcitonin levels associated with increased intensive care unit admission and mortality in patients with a COVID-19 infection in the emergency department. BMC Infect Dis. 2022 Feb 21;22(1):165.
20. Cohen MS. Early treatment to prevent progression of SARS-CoV-2 infection. Lancet Respir Med. 2022 Oct 1;10(10):930–1.
21. Sack GH. Serum amyloid A – a review. Mol Med. 2018 Aug 30;24(1):46.
22. Buck MD, Gouwy M, Wang JM, Snick JV, Opdenakker G, Struyf S, et al. Structure and expression of different serum amyloid A (SAA) variants and their concentration-dependent functions during host insults. Curr Med Chem. 2016;23(17):1725–55.
23. Upragarin N, Landman WJM, Gaastra W, Gruys E. Extrahepatic production of acute phase serum amyloid A. Histol Histopathol. 2005 Oct;20(4):1295–307.
24. Jensen LE, Whitehead AS. Regulation of serum amyloid A protein expression during the acute-phase response. Biochem J. 1998 Sep 15;334(3):489–503.
25. Takata S, Wada H, Tamura M, Koide T, Higaki M, Mikura SI, et al. Kinetics of C-reactive protein (CRP) and serum amyloid A protein (SAA) in patients with community-acquired pneumonia (CAP), as presented with biologic half-life times. Biomarkers. 2011 Sep;16(6):530–5.
26. Simons JP, Al-Shawi R, Ellmerich S, Speck I, Aslam S, Hutchinson WL, et al. Pathogenetic mechanisms of amyloid A amyloidosis. Proc Natl Acad Sci. 2013 Oct 1;110(40):16115–20.
27. Wu Y, Kang L, Guo Z, Liu J, Liu M, Liang W. Incubation period of COVID-19 caused by unique SARS-CoV-2 strains: a systematic review and meta-analysis. JAMA Netw Open. 2022 Aug 1;5(8):e2228008.
28. Yang R, Gui X, Gao S, Ke H, Xiong Y. Clinical progression and changes of chest CT findings among asymptomatic and pre-symptomatic patients with SARS-CoV-2 infection in Wuhan, China. Expert Rev Respir Med. 2021 Mar 4;15(3):411–7.
29. da Rosa Mesquita R, Francelino Silva Junior LC, Santos Santana FM, Farias de Oliveira T, Campos Alcântara R, Monteiro Arnozo G, et al. Clinical manifestations of COVID-19 in the general population: systematic review. Wien Klin Wochenschr. 2021 Apr 1;133(7):377–82.
30. He X, Cheng X, Feng X, Wan H, Chen S, Xiong M. Clinical symptom differences between mild and severe COVID-19 patients in China: a meta-analysis. Front Public Health. 2021;8:561264.
31. Yang H, Xi X, Wang W, Gu B. Immune response, viral shedding time, and clinical characterization in COVID-19 patients with gastrointestinal symptoms. Front Med. 2021 Jun 17;8:593623.
32. Deng H, Mai Y, Liu H, Guan J. Clinical characteristics of liver injury in SARS-CoV-2 Omicron variant- and Omicron subvariant-infected patients. Ann Hepatol. 2023 Jan 1;28(1):100763.
33. Conway EM, Mackman N, Warren RQ, Wolberg AS, Mosnier LO, Campbell RA, et al. Understanding COVID-19-associated coagulopathy. Nat Rev Immunol. 2022 Oct;22(10):639–49.
34. Castro RA, Frishman WH. Thrombotic complications of COVID-19 infection: a review. Cardiol Rev. 2021 Feb;29(1):43–7.
35. Page MJ, Thomson GJA, Nunes JM, Engelbrecht AM, Nell TA, de Villiers WJS, et al. Serum amyloid A binds to fibrin(ogen), promoting fibrin amyloid formation. Sci Rep. 2019 Feb 28;9(1):3102.
36. Siman-Tov R, Shalabi R, Shlomai A, Goldberg E, Essa W, Shusterman E, et al. Elevated serum amyloid A levels contribute to increased platelet adhesion in COVID-19 patients. Int J Mol Sci. 2022 Jan;23(22):14243.
37. Ji M, Yuan L, Shen W, Lv J, Li Y, Li M, et al. Characteristics of disease progress in patients with coronavirus disease 2019 in Wuhan, China. Epidemiol Infect. 2020 May 6;148:e94.
38. Li H, Xiang X, Ren H, Xu L, Zhao L, Chen X, et al. Serum amyloid A is a biomarker of severe coronavirus disease and poor prognosis. J Infect. 2020 Jun;80(6):646–55.
39. Mo XN, Su ZQ, Lei CL, Chen DF, Peng H, Chen RC, et al. Serum amyloid A is a predictor for prognosis of COVID-19. Respirol Carlton Vic. 2020 Jul;25(7):764–5.
40. Lu W, Yang L, Li X, Sun M, Zhang A, Qi S, et al. Early immune responses and prognostic factors in children with COVID-19: a single-center retrospective analysis. BMC Pediatr. 2021 Apr 17;21(1):181.
41. Shi F, Wu T, Zhu X, Ge Y, Zeng X, Chi Y, et al. Association of viral load with serum biomakers among COVID-19 cases. Virology. 2020 Jul 1;546:122–6.
42. Velavan TP, Kuk S, Linh LTK, Lamsfus Calle C, Lalremruata A, Pallerla SR, et al. Longitudinal monitoring of laboratory markers characterizes hospitalized and ambulatory COVID-19 patients. Sci Rep. 2021 Jul 14;11(1):14471.
43. Li X, Wang L, Yan S, Yang F, Xiang L, Zhu J, et al. Clinical characteristics of 25 death cases with COVID-19: A retrospective review of medical records in a single medical center, Wuhan, China. Int J Infect Dis. 2020 May 1;94:128–32.
44. Wang D, Li R, Wang J, Jiang Q, Gao C, Yang J, et al. Correlation analysis between disease severity and clinical and biochemical characteristics of 143 cases of COVID-19 in Wuhan, China: a descriptive study. BMC Infect Dis. 2020 Jul 16;20(1):519.
45. Fu J, Huang PP, Zhang S, Yao QD, Han R, Liu HF, et al. The value of serum amyloid A for predicting the severity and recovery of COVID‑19. Exp Ther Med. 2020 Oct 1;20(4):3571–7.
46. Gandhi D, Jain N, Khanna K, Li S, Patel L, Gupta N. Current role of imaging in COVID-19 infection with recent recommendations of point of care ultrasound in the contagion: a narrative review. Ann Transl Med. 2020 Sep;8(17):1094–1094.
47. Sharma S, Aggarwal A, Sharma RK, Patras E, Singhal A. Correlation of chest CT severity score with clinical parameters in COVID-19 pulmonary disease in a tertiary care hospital in Delhi during the pandemic period. Egypt J Radiol Nucl Med. 2022 Jul 28;53(1):166.
48. Zhou Y, Yang Q, Chi J, Dong B, Lv W, Shen L, et al. Comorbidities and the risk of severe or fatal outcomes associated with coronavirus disease 2019: a systematic review and meta-analysis. Int J Infect Dis. 2020 Oct;99:47–56.
49. Zhang Q, Wei Y, Chen M, Wan Q, Chen X. Clinical analysis of risk factors for severe COVID-19 patients with type 2 diabetes. J Diabetes Complications. 2020 Oct 1;34(10):107666.
50. Fu Y, Hu L, Ren HW, Zuo Y, Chen S, Zhang QS, et al. Prognostic factors for COVID-19 hospitalized patients with preexisting type 2 diabetes. Int J Endocrinol. 2022 Jan 17;2022:9322332.
51. Xia F, Zhang M, Cui B, An W, Chen M, Yang P, et al. COVID-19 patients with hypertension are at potential risk of worsened organ injury. Sci Rep. 2021 Feb 12;11(1):3779.
52. Wang Y, Li L, Pan Y, He Y, Chen Z, Xun Y, et al. Comparison of the clinical features and therapeutics of COVID-19 in cardio-cerebrovascular disease (CCVD) and non-CCVD patients. Front Med. 2021 Aug;15(4):629–37.
53. Zhao Y, He X, Shi X, Huang C, Liu J, Zhou S, et al. Association between serum amyloid A and obesity: a meta-analysis and systematic review. Inflamm Res. 2010 May 1;59(5):323–34.
54. Frasca D, Reidy L, Cray C, Diaz A, Romero M, Kahl K, et al. Influence of obesity on serum levels of SARS-CoV-2-specific antibodies in COVID-19 patients. PLOS ONE. 2021 Mar 24;16(3):e0245424.
55. Russe-Russe JR, Abramowitz C, Pellegrini JR, Betancourt AA, Cohen R, Baldino M, et al. COVID-19 exposure unmasking systemic amyloidosis with hepatic predominance. Cureus. 2022 Nov 4;14(11):e31092.
56. Jana AK, Greenwood AB, Hansmann UHE. Presence of a SARS-CoV-2 protein enhances amyloid formation of serum amyloid A. J Phys Chem B. 2021 Aug 19;125(32):9155–67.
57. Subramanian A, Nirantharakumar K, Hughes S, Myles P, Williams T, Gokhale KM, et al. Symptoms and risk factors for long COVID in non-hospitalized adults. Nat Med. 2022 Aug;28(8):1706–14.
58. Castanares-Zapatero D, Chalon P, Kohn L, Dauvrin M, Detollenaere J, Maertens de Noordhout C, et al. Pathophysiology and mechanism of long COVID: a comprehensive review. Ann Med. 2022 Dec;54(1):1473–87.
59. Pretorius E, Vlok M, Venter C, Bezuidenhout JA, Laubscher GJ, Steenkamp J, et al. Persistent clotting protein pathology in Long COVID/Post-Acute Sequelae of COVID-19 (PASC) is accompanied by increased levels of antiplasmin. Cardiovasc Diabetol. 2021 Aug 23;20(1):172.