Srpski ESSENTIAL TRACE METALS IN HEALTH AND DISEASE

  • Vedrana Makević Medicinski fakultet, Univerzitet u Beogradu
  • Anđelija Ilić
  • Silvio R. de Luka
Keywords: Essential metals, Microelements, Toxicity

Abstract


Essential trace metals (Fe, Zn, Cu, Mn, Mo, Co) are involved in high number of physiological and metabolic activities and therefore have substantial role in organism. Thus, their balance is tightly regulated on levels of absorption, transport, and storage in the organism. They can alter human health in both deficiency and overload conditions. On one hand in deficiency health problems are due to reduction of their physiological activities. On the other hand, Fe, Cu and Co are redox active metals and their increase can cause severe tissue damage through oxidative stress. Many well-established diseases like iron and copper deficiency anemia, hemochromatosis, Menkes and Wilson disease, acrodermatitis enteropathica are consequence of essential metal alterations. Nowadays, trace metals alterations are also found to be implicated in neurodegenerative disease, cancers, atherosclerosis, and diabetes. Those diseases represent enormous health problems in contemporary society and trace metals might help to further elucidate their pathogenesis and potentially even treatment. In the present study, we review essential trace metals kinetic and physiology, as well as their roles in disease pathophysiology.

References

1.         Prashanth L, Kattapagari K, Chitturi R, Baddam V, Prasad L. A review on role of essential trace elements in health and disease. Journal of Dr NTR University of Health Sciences. 2015;4(2):75-85.


2.         Zoroddu MA, Aaseth J, Crisponi G, Medici S, Peana M, Nurchi VM. The essential metals for humans: a brief overview. J Inorg Biochem. 2019;195:120-9.


3.         Jomova K, Makova M, Alomar SY, Alwasel SH, Nepovimova E, Kuca K, et al. Essential metals in health and disease. Chemico-Biological Interactions. 2022;367:110173.


4.         Lieu PT, Heiskala M, Peterson PA, Yang Y. The roles of iron in health and disease. Mol Aspects Med. 2001;22(1-2):1-87.


5.         Lal A. Iron in Health and Disease: An Update. Indian J Pediatr. 2020;87(1):58-65.


6.         Attar T. A mini-review on importance and role of trace elements in the human organism. Chemical Review and Letters. 2020;3(3):117-30.


7.         Foley PB, Hare DJ, Double KL. A brief history of brain iron accumulation in Parkinson disease and related disorders. Journal of Neural Transmission. 2022;129(5):505-20.


8.         Chiang S, Kovacevic Z, Sahni S, Lane DJ, Merlot AM, Kalinowski DS, et al. Frataxin and the molecular mechanism of mitochondrial iron-loading in Friedreich's ataxia. Clin Sci (Lond). 2016;130(11):853-70.


9.         Brissot P, Pietrangelo A, Adams PC, de Graaff B, McLaren CE, Loréal O. Haemochromatosis. Nat Rev Dis Primers. 2018;4:18016.


10.       Djordjevich DM, De Luka SR, Milovanovich ID, Janković S, Stefanović S, Vesković-Moračanin S, et al. Hematological parameters' changes in mice subchronically exposed to static magnetic fields of different orientations. Ecotoxicol Environ Saf. 2012;81:98-105.


11.       Bonaventura P, Benedetti G, Albarède F, Miossec P. Zinc and its role in immunity and inflammation. Autoimmun Rev. 2015;14(4):277-85.


12.       Fukada T, Yamasaki S, Nishida K, Murakami M, Hirano T. Zinc homeostasis and signaling in health and diseases: Zinc signaling. J Biol Inorg Chem. 2011;16(7):1123-34.


13.       Frederickson CJ, Bush AI. Synaptically released zinc: Physiological functions and pathological effects. Biometals. 2001;14(3):353-66.


14.       Grummt F, Weinmann-Dorsch C, Schneider-Schaulies J, Lux A. Zinc as a second messenger of mitogenic induction. Effects on diadenosine tetraphosphate (Ap4A) and DNA synthesis. Exp Cell Res. 1986;163(1):191-200.


15.       Truong-Tran AQ, Carter J, Ruffin RE, Zalewski PD. The role of zinc in caspase activation and apoptotic cell death. Biometals. 2001;14(3):315-30.


16.       Franklin RB, Costello LC. The important role of the apoptotic effects of zinc in the development of cancers. J Cell Biochem. 2009;106(5):750-7.


17.       Schmidt C, Beyersmann D. Transient peaks in zinc and metallothionein levels during differentiation of 3T3L1 cells. Arch Biochem Biophys. 1999;364(1):91-8.


18.       Apostolova MD, Ivanova IA, Cherian MG. Signal transduction pathways, and nuclear translocation of zinc and metallothionein during differentiation of myoblasts. Biochem Cell Biol. 2000;78(1):27-37.


19.       Wan Y, Zhang B. The Impact of Zinc and Zinc Homeostasis on the Intestinal Mucosal Barrier and Intestinal Diseases. Biomolecules. 2022;12(7).


20.       Prasad AS. Discovery of human zinc deficiency: its impact on human health and disease. Adv Nutr. 2013;4(2):176-90.


21.       Ibs KH, Rink L. Zinc-altered immune function. J Nutr. 2003;133(5 Suppl 1):1452s-6s.


22.       Wang K, Zhou B, Kuo YM, Zemansky J, Gitschier J. A novel member of a zinc transporter family is defective in acrodermatitis enteropathica. Am J Hum Genet. 2002;71(1):66-73.


23.       Allouche-Fitoussi D, Breitbart H. The Role of Zinc in Male Fertility. International Journal of Molecular Sciences. 2020;21(20):7796.


24.       Leung KW, Gvritishvili A, Liu Y, Tombran-Tink J. ZIP2 and ZIP4 mediate age-related zinc fluxes across the retinal pigment epithelium. J Mol Neurosci. 2012;46(1):122-37.


25.       Ogawa Y, Kinoshita M, Shimada S, Kawamura T. Zinc and Skin Disorders. Nutrients. 2018;10(2).


26.       Stelmashook EV, Isaev NK, Genrikhs EE, Amelkina GA, Khaspekov LG, Skrebitsky VG, et al. Role of zinc and copper ions in the pathogenetic mechanisms of Alzheimer’s and Parkinson’s diseases. Biochemistry (Moscow). 2014;79(5):391-6.


27.       Agnew UM, Slesinger TL. Zinc Toxicity.  StatPearls. Treasure Island (FL): StatPearls Publishing


Copyright © 2022, StatPearls Publishing LLC.; 2022.


28.       Sikora J, Ouagazzal AM. Synaptic Zinc: An Emerging Player in Parkinson's Disease. Int J Mol Sci. 2021;22(9).


29.       Chen L, Min J, Wang F. Copper homeostasis and cuproptosis in health and disease. Signal Transduct Target Ther. 2022;7(1):378.


30.       Tisato F, Marzano C, Porchia M, Pellei M, Santini C. Copper in diseases and treatments, and copper-based anticancer strategies. Med Res Rev. 2010;30(4):708-49.


31.       Cannas D, Loi E, Serra M, Firinu D, Valera P, Zavattari P. Relevance of Essential Trace Elements in Nutrition and Drinking Water for Human Health and Autoimmune Disease Risk. Nutrients. 2020;12(7).


32.       Qiu Q, Zhang F, Zhu W, Wu J, Liang M. Copper in Diabetes Mellitus: a Meta-Analysis and Systematic Review of Plasma and Serum Studies. Biol Trace Elem Res. 2017;177(1):53-63.


33.       Tang D, Chen X, Kroemer G. Cuproptosis: a copper-triggered modality of mitochondrial cell death. Cell Research. 2022;32(5):417-8.


34.       Wazir SM, Ghobrial I. Copper deficiency, a new triad: anemia, leucopenia, and myeloneuropathy. J Community Hosp Intern Med Perspect. 2017;7(4):265-8.


35.       Hureau C, Faller P. Aβ-mediated ROS production by Cu ions: Structural insights, mechanisms and relevance to Alzheimer's disease. Biochimie. 2009;91(10):1212-7.


36.       Sauzéat L, Bernard E, Perret-Liaudet A, Quadrio I, Vighetto A, Krolak-Salmon P, et al. Isotopic Evidence for Disrupted Copper Metabolism in Amyotrophic Lateral Sclerosis. iScience. 2018;6:264-71.


37.       Fox JH, Kama JA, Lieberman G, Chopra R, Dorsey K, Chopra V, et al. Mechanisms of copper ion mediated Huntington's disease progression. PLoS One. 2007;2(3):e334.


38.       Ma Q, Li Y, Du J, Liu H, Kanazawa K, Nemoto T, et al. Copper binding properties of a tau peptide associated with Alzheimer's disease studied by CD, NMR, and MALDI-TOF MS. Peptides. 2006;27(4):841-9.


39.       Chen LL, Fan YG, Zhao LX, Zhang Q, Wang ZY. The metal ion hypothesis of Alzheimer's disease and the anti-neuroinflammatory effect of metal chelators. Bioorg Chem. 2023;131:106301.


40.       Mortada WI, Awadalla A, Khater S, Ahmed A, Hamam ET, El-zayat M, et al. Copper and zinc levels in plasma and cancerous tissues and their relation with expression of VEGF and HIF-1 in the pathogenesis of muscle invasive urothelial bladder cancer: a case-controlled clinical study. Environmental Science and Pollution Research. 2020;27(13):15835-41.


41.       Zabłocka-Słowińska K, Płaczkowska S, Prescha A, Pawełczyk K, Porębska I, Kosacka M, et al. Serum and whole blood Zn, Cu and Mn profiles and their relation to redox status in lung cancer patients. Journal of Trace Elements in Medicine and Biology. 2018;45:78-84.


42.       Bagheri B, Akbari N, Tabiban S, Habibi V, Mokhberi V. Serum level of copper in patients with coronary artery disease. Niger Med J. 2015;56(1):39-42.


43.       Erikson KM, Aschner M. Manganese: Its Role in Disease and Health. Met Ions Life Sci. 2019;19.


44.       Avila DS, Puntel RL, Aschner M. Manganese in health and disease. Met Ions Life Sci. 2013;13:199-227.


45.       Rondanelli M, Faliva MA, Peroni G, Infantino V, Gasparri C, Iannello G, et al. Essentiality of Manganese for Bone Health: An Overview and Update. Natural Product Communications. 2021;16(5):1934578X211016649.


46.       Carl GF, Blackwell LK, Barnett FC, Thompson LA, Rissinger CJ, Olin KL, et al. Manganese and epilepsy: brain glutamine synthetase and liver arginase activities in genetically epilepsy prone and chronically seizured rats. Epilepsia. 1993;34(3):441-6.


47.       Olanow CW. Manganese-induced parkinsonism and Parkinson's disease. Ann N Y Acad Sci. 2004;1012:209-23.


48.       Budinger D, Barral S, Soo AKS, Kurian MA. The role of manganese dysregulation in neurological disease: emerging evidence. Lancet Neurol. 2021;20(11):956-68.


49.       Caito S, Aschner M. Chapter 11 - Neurotoxicity of metals. In: Lotti M, Bleecker ML, editors. Handbook of Clinical Neurology. 131: Elsevier; 2015. p. 169-89.


50.       Schwarz G. Molybdenum cofactor and human disease. Current Opinion in Chemical Biology. 2016;31:179-87.


51.       Schwarz G, Belaidi AA. Molybdenum in Human Health and Disease. In: Sigel A, Sigel H, Sigel RKO, editors. Interrelations between Essential Metal Ions and Human Diseases. Dordrecht: Springer Netherlands; 2013. p. 415-50.


52.       Novotny JA, Peterson CA. Molybdenum. Advances in Nutrition. 2018;9(3):272-3.


53.       Yamada K. Cobalt: its role in health and disease. Interrelations between essential metal ions and human diseases. 2013:295-320.


54.       Meo SA. Cobalt Deficiency. In: Lang F, editor. Encyclopedia of Molecular Mechanisms of Disease. Berlin, Heidelberg: Springer Berlin Heidelberg; 2009. p. 380-1.


55.       Paustenbach DJ, Tvermoes BE, Unice KM, Finley BL, Kerger BD. A review of the health hazards posed by cobalt. Critical Reviews in Toxicology. 2013;43(4):316-62.


56.       Zhu Q, Liao S, Lu X, Shi S, Gong D, Cheang I, et al. Cobalt exposure in relation to cardiovascular disease in the United States general population. Environmental Science and Pollution Research. 2021;28(31):41834-42.

Published
2024/02/22
Section
Mini pregledni članak