ACELULAR 3D PRINTING IN BONE DEFECT SURGICAL RECONSTRUCTION

Keywords: medical 3D printing;, medical models;, surgical guides;, virtual surgery planning;, bone defect reconstruction;, bone tissue replacement;, bone grafts;

Abstract


3D printing in medicine represents one of the fastest-growing fields, which has awakened the highest expectations in biomedicine. 3D printing is predominantly used when replacing autografts and xenografts with alloplastic personalized tissue substitutes and constructs. This publication will present an overview of contemporary literature dealing with acellular 3D printing in reconstructing bone defects. It will also describe the 3D printing technology, the scope and the main problems it faces in reconstructing bone defects. This review will include the application of 3D printing technology in preoperative surgical planning, the creation of personalized medical models and surgical guides, as well as acellular 3D printing in bone tissue engineering, i.e. in the production of bone scaffolds. We will briefly refer to the application of 3D printing in our country because the available literature indicates a contrast between the current needs and the use of this technology in reconstructive skeletal surgery in Serbia. The neglected and unused benefits of modern 3D printing methods burden the health system with significant socio-economic consequences for public health.

Author Biography

Marija Djuric, Center of bone biology

Full professor of anatomy 

References

1. Bücking TM, Hill ER, Robertson JL, Maneas E, Plumb AA, Nikitichev DI. From medical imaging data to 3D printed anatomical models. PLoS One. 2017 May 31;12(5):e0178540.


2. Serrano C, Van Den Brink H, Pineau J, Prognon P, Martelli N. Benefits of 3D printing applications in jaw reconstruction: A systematic review and meta-analysis. J Craniomaxillofac Surg. 2019 Sep;47(9):1387-1397.


3. Hong Q, Lin L, Li Q, Jiang Z, Fang J, Wang B, et al. A direct slicing technique for the 3D printing of implicitly represented medical models. Computers in Biology and Medicine. 2021;135(May), 104534.


4. Eltes PE, Kiss L, Bartos M, Gyorgy ZM, Csakany T, Bereczki F, et al. Geometril accuracy evaluation of an affordable 3D printing technology for spine physical models. Journal of Clinical Neuroscience. 2020;72(xxxx), 438–446.


5. Tel A, Costa F, Sembronio S, Lazzarotto A, Robiony M. All-in-one surgical guide: A new method for cranial vault resection and reconstruction. J Craniomaxillofac Surg. 2018 Jun;46(6):967-973.


6. Mitsouras D, Liacouras P, Imanzadeh A, Giannopoulos AA, Cai T, Kumamaru KK, George E, Wake N, Caterson EJ, Pomahac B, Ho VB, Grant GT, Rybicki FJ. Medical 3D Printing for the Radiologist. Radiographics. 2015 Nov-Dec;35(7):1965-88.


7. Sander IM, McGoldrick MT, Helms MN, Betts A, van Avermaete A, Owers E, Doney E, Liepert T, Niebur G, Liepert D, Leevy WM. Three-dimensional printing of X-ray computed tomography datasets with multiple materials using open-source data processing. Anat Sci Educ. 2017 Jul;10(4):383-391.


8. Vyas KS, Suchyta MA, Hunt CH, Gibreel W, Mardini S. Black Bone MRI for Virtual Surgical Planning in Craniomaxillofacial Surgery. Semin Plast Surg. 2022 Dec 7;36(3):192-198.


9. Jokanović V, Čolović B, Marković D, Petrović, M, Jokanović M, Milosavljević P, Sopta J. In Vivo Investigation of ALBO-OS Scaffold Based on Hydroxyapatite and PLGA. Journal of Nanomaterials. 2016. Available at https://doi.org/10.1155/2016/3948768


10. Klimek L, Klein HM, Schneider W, Mösges R, Schmelzer B, Voy ED. Stereolithographic modelling for reconstructive head surgery. Acta Otorhinolaryngol Belg. 1993;47(3):329-34. PMID: 8213143.


11. Arealis G, Nikolaou VS. Bone printing: new frontiers in the treatment of bone defects. Injury. 2015 Dec;46 Suppl 8:S20-2.


12. Truscott A, Zamani R, Akrami M. Comparing the use of conventional and three-dimensional printing (3DP) in mandibular reconstruction. Biomed Eng Online. 2022 Mar 19;21(1):18.


13. Tack P, Victor J, Gemmel P, Annemans L. 3D-printing techniques in a medical setting: a systematic literature review. Biomed Eng Online. 2016 Oct 21;15(1):115.


14. Genova T, Roato I, Carossa M, Motta C, Cavagnetto D, Mussano F. Advances on Bone Substitutes through 3D Bioprinting. Int J Mol Sci. 2020 Sep 23;21(19):7012.


15. Shen C, Witek L, Flores RL, Tovar N, Torroni A, Coelho PG, et al. Three-Dimensional Printing for Craniofacial Bone Tissue Engineering. Tissue Eng Part A. 2020 Dec;26(23-24):1303-1311.


16. Micic M, Antonijevic D, Milutinovic-Smiljanic S, Trisic D, Colovic B, Kosanovic D, et al. Developing a novel resorptive hydroxyapatite-based bone substitute for over-critical size defect reconstruction: physicochemical and biological characterization and proof of concept in segmental rabbit's ulna reconstruction. Biomed Tech (Berl). 2020 Aug 27;65(4):491-505.


17. Sun C, Kang J, Yang C, Zheng J, Su Y, Dong E, et al. Additive manufactured polyether-ether-ketone implants for orthopaedic applications: a narrative review. Biomater Transl. 2022 Jun 28;3(2):116-133.


18. Bueno EM, Glowacki J. Cell-free and cell-based approaches for bone regeneration. Nat Rev Rheumatol. 2009 Dec;5(12):685-97.


19. Murray-Douglass A, Snoswell C, Winter C, Harris R. Three-dimensional (3D) printing for post-traumatic orbital reconstruction, a systematic review and meta-analysis. Br J Oral Maxillofac Surg. 2022 Nov;60(9):1176-1183.


20. Leukers B, Gülkan H, Irsen SH, Milz S, Tille C, Schieker M, et al. Hydroxyapatite scaffolds for bone tissue engineering made by 3D printing. J Mater Sci Mater Med. 2005; 16(12):1121-4.


21. Della Bona A, Cantelli V, Britto VT, Collares KF, Stansbury JW. 3D printing restorative materials using a stereolithographic technique: a systematic review. Dent Mater. 2021 Feb;37(2):336-350.


22. Zimmermann M, Ender A, Attin T, Mehl A. Fracture load of three-unit full-contour fixed dental prostheses fabricated with subtractive and additive CAD/CAM technology. Clin Oral Investig. 2020 Feb;24(2):1035-1042.


23. Manufactur3D, The Difference between DLP and SLA 3D Printing Technology, January 11.2018. https://manufactur3dmag.com/difference-dlp-sla/


24. Lim HK, Hong SJ, Byeon SJ, Chung SM, On SW, Yang BE, et al. 3D-Printed Ceramic Bone Scaffolds with Variable Pore Architectures. Int J Mol Sci. 2020 Sep 22;21(18):6942.


25. Kim JW, Yang BE, Hong SJ, Choi HG, Byeon SJ, Lim HK, et al. Bone Regeneration Capability of 3D Printed Ceramic Scaffolds. Int J Mol Sci. 2020 Jul 8;21(14):4837.


26. Feng Y, Zhu S, Mei D, Li J, Zhang J, Yang S, et al. Application of 3D Printing Technology in Bone Tissue Engineering: A Review. Curr Drug Deliv. 2021;18(7):847-861.


27. Jokanović V, Čolović B, Antonijević Đ, Mićić M, Živković S, Various methods of 3D printing and Bio-printing. Serbian Dental Journal. 2017;64(3)


28. Li S, Huan Y, Zhu B, Chen H, Tang M, Yan Y, et al. Research progress on the biological modifications of implant materials in 3D printed intervertebral fusion cages. J Mater Sci Mater Med. 2021 Dec 23;33(1):2.


29. https://www.xilloc.com/


30 . Lim SH, Kim MK, Kang SH. Precision of fibula positioning guide in mandibular reconstruction with a fibula graft. Head Face 3Med. 2016;12:7. Published 2016 Jan 27.


31. Liu L, Shi G, Cui Y, Li H, Li Z, Zeng Q, et al. Individual construction of freeform-fabricated polycaprolactone scaffolds for osteogenesis. Biomed Tech (Berl). 2017 Oct 26;62(5):467-479.


32. Osman MA, Virgilio N, Rouabhia M, Mighri F. Development and Characterization of Functional Polylactic Acid/Chitosan Porous Scaffolds for Bone Tissue Engineering. Polymers (Basel). 2022 Nov 23;14(23):5079.


33. Gandolfi MG, Zamparini F, Degli Esposti M, Chiellini F, Aparicio C, Fava F, et al. Polylactic acid-based porous scaffolds doped with calcium silicate and dicalcium phosphate dihydrate designed for biomedical application. Mater Sci Eng C Mater Biol Appl. 2018 Jan 1;82:163-181.


34. Lal H, Patralekh MK. 3D printing and its applications in orthopaedic trauma: A technological marvel. J Clin Orthop Trauma. 2018 Jul-Sep;9(3):260-268.


35. Kumar A, Yap WT, Foo SL, Lee TK. Effects of Sterilization Cycles on PEEK for Medical Device Application. Bioengineering (Basel). 2018;5(1):18. Published 2018 Feb 21.


36. Meglioli M, Naveau A, Macaluso GM, Catros S. 3D printed bone models in oral and cranio-maxillofacial surgery: a systematic review. 3D Print Med. 2020 Oct 20;6(1):30.


37. Kumar P, Vatsya P, Rajnish RK, Hooda A, Dhillon MS. Application of 3D Printing in Hip and Knee Arthroplasty: A Narrative Review. Indian J Orthop. 2020 Oct 6;55(Suppl 1):14-26.


38. Yamaguchi JT, Hsu WK. Three-Dimensional Printing in Minimally Invasive Spine Surgery. Curr Rev Musculoskelet Med. 2019 Dec;12(4):425-435.


39. Pieralli S, Spies BC, Hromadnik V, Nicic R, Beuer F, Wesemann C. How Accurate Is Oral Implant Installation Using Surgical Guides Printed from a Degradable and Steam-Sterilized Biopolymer? J Clin Med. 2020 Jul 22;9(8):2322.


40. Kamio T, Hayashi K, Onda T, Takaki T, Shibahara T, Yakushiji T, et al. Utilizing a low-cost desktop 3D printer to develop a "one-stop 3D printing lab" for oral and maxillofacial surgery and dentistry fields. 3D Print Med. 2018 Aug 13;4(1):6.


41. Sieira Gil R, Roig AM, Obispo CA, Morla A, Pagès CM, Perez JL. Surgical planning and microvascular reconstruction of the mandible with a fibular flap using computer-aided design, rapid prototype modelling, and precontoured titanium reconstruction plates: a prospective study. Br J Oral Maxillofac Surg. 2015 Jan;53(1):49-53.


42. Tarsitano A, Battaglia S, Crimi S, Ciocca L, Scotti R, Marchetti C. Is a computer-assisted design and computer-assisted manufacturing method for mandibular reconstruction economically viable? J Craniomaxillofac Surg. 2016 Jul;44(7):795-9.


43. Tarsitano A, Ciocca L, Scotti R, Marchetti C. Morphological results of customized microvascular mandibular reconstruction: A comparative study. J Craniomaxillofac Surg. 2016 Jun;44(6):697-702.


44. Liu Z, Xin W, Ji J, Xu J, Zheng L, Qu X, et al. 3D-Printed Hydrogels in Orthopedics: Developments, Limitations, and Perspectives. Front Bioeng Biotechnol. 2022 Apr 1;10:845342.


45. Ganguly P, Jones E, Panagiotopoulou V, Jha A, Blanchy M, Antimisiaris S, et al. Electrospun and 3D printed polymeric materials for one-stage critical-size long bone defect regeneration inspired by the Masquelet technique: Recent Advances. Injury. 2022 Oct;53 Suppl 2:S2-S12.


46. Beheshtizadeh N, Azami M, Abbasi H, Farzin A. Applying extrusion-based 3D printing technique accelerates fabricating complex biphasic calcium phosphate-based scaffolds for bone tissue regeneration. J Adv Res. 2022 Sep;40:69-94.


47. Xu J, Ji J, Jiao J, Zheng L, Hong Q, Tang H, et al. 3D Printing for Bone-Cartilage Interface Regeneration. Front Bioeng Biotechnol. 2022 Feb 14;10:828921.


48. Komlev VS, Popov VK, Mironov AV, Fedotov AY, Teterina AY, Smirnov IV, Bozo IY, Rybko VA, Deev RV. 3D Printing of Octacalcium Phosphate Bone Substitutes. Front Bioeng Biotechnol. 2015 Jun 8;3:81.


49. Salah M, Tayebi L, Moharamzadeh K, Naini FB. Three-dimensional bio-printing and bone tissue engineering: technical innovations and potential applications in maxillofacial reconstructive surgery. Maxillofac Plast Reconstr Surg. 2020 Jun 3;42(1):18.

Published
2023/11/29
Section
Mini pregledni članak