VOLUMETRIJSKA ANALIZA LIPIDNIH KAPI U LIMFOCITIMA BOLESNIKA SA TIP 2 DIJABETES MELITUSOM I HIPERLIPIDEMIJOM

  • aleksa___zivkovic Univerzitet u Beogradu, Medicinski fakultet, Beograd, Srbija
Ključne reči: tip 2 dijabetes melitus, hiperlipidemija, lipidne kapi, lipofagi, lipolizozomi

Sažetak


Uvod: Tip 2 dijabetes melitus (T2DM) je hronični metabolički poremećaj kojeg karakteriše neadekvatna homeostaza glukoze. Jedna od uobičajenih pojava kod T2DM je dijabetska dislipidemija. Lipidne kapi imaju ulogu u skladištenju lipida u ćeliji, te se kao takve nalaze u centru homeostaze lipida i energije. Lipolizozomi predstavljaju ćelijske organele koje imaju strukturu lipidnih kapi okruženih membranom. Lipofagija je jedan od selektivnih oblika autofagije u kome dolazi do razgradnje lipidnih kapi, što predstavlja značajan mehanizam regulacije homeostaze lipidnih kapi.

Cilj rada: Ciljevi našeg istraživanja bili su analiza zapreminskog udela lipidnih kapi, autofagijskih vezikula sa lipidnim kapima (lipofaga), kao i lipolizozoma u limfocitima bolesnika sa T2DM i hiperlipidemijom.

Materijal i metode: Iz krvi dobijene od bolesnika sa T2DM i hiperlipidemijom i od zdravih osoba izolovane su mononuklearne ćelije koje su potom fiksirane u glutaraldehidu i postfiksirane u 1% rastvoru osmijum tetroksida. Nakon kontrastiranja u 4,7% rastvoru uranilacetata, uzorci su kalupljeni u epoksi smolama, a potom sečeni na ultramikrotomu. Dobijeni ultratanki isečci su ponovo kontrastirani i zatim analizirani na transmisionom elektronskom mikroskopu. Zapreminski udeo lipidnih kapi, lipofaga i lipolizozoma je određivan primenom dvostruke „coherent point“ mrežice sa tačkama u dve različite gustine.

Rezultati: Zapreminski udeo lipidnih kapi i lipofaga nije se značajno razlikovao u limfocitima bolesnika sa T2DM i hiperlipidemijom i zdravih ispitanika, dok je zapreminski udeo lipolizozoma bio statistički značajno veći u limfocitima bolesnika u odnosu na zdrave ispitanike (p < 0,05).

Zaključak: Povećan zapreminski udeo lipolizozoma otkriven u limfocitima bolesnika sa T2DM i hiperlipidemijom može govoriti u prilog pojačanoj aktivnosti ovih organela, a samim tim i povećanog lipidnog metabolizma u ćelijama kod ovih bolesnika.

Reference

1. Tomic D, Shaw JE, Magliano DJ. The burden and risks of emerging complications of diabetes mellitus. Nat Rev Endocrinol. 2022; 18(9):525-39.


2. Galicia-Garcia U, Benito-Vicente A, Jebari S, Larrea-Sebal A, Siddiqi H, Uribe KB, et al. Pathophysiology of type 2 diabetes mellitus. Int J Mol Sci. 2020; 21(17):6275.


3. DeDronzo RA, Ferrannini E, Groop L, Henry RR, Herman WH, Holst JJ, et al. Type 2 diabetes mellitus. Nat Rev Dis Primers. 2015; 1:15019.


4. Olzmann JA, Carvalho P. Dynamics and functions of lipid droplets. Nat Rev Mol Cell Biol. 2019; 20(3):137-55.


5. Iancu TC, Manov I, Shaoul R, Haimi M, Lerner A. What's in a name?-"Lipolysosome": ultrastructural features of a lipid-containing organelle. Ultrastruct Pathol. 2013; 37(5):293-303.


6. Haimi M, Iancu TC, Shaffer LG, Lerner A. Severe lysosomal storage disease of liver in del(1)(p36): a new presentation. Eur J Med Genet. 2011; 54(3):209-13.


7. Hayashi H, Sameshima Y, Lee M, Hotta Y, Kosaka T. Lipolysosomes in human hepatocytes: their increase in number associated with serum level of cholesterol in chronic liver diseases. Hepatology. 1983; 3(2):221-5.


8. Parzych KR, Klionsky DJ. An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal. 2014; 20(3):460-73.


9. Klionsky DJ, Petroni G, Amaravadi RK, Baehrecke EH, Ballabio A, Boya P, et al. Autophagy in major human diseases. EMBO J. 2021; 40(19):e108863.


10. Lorincz P, Juhasz G. Autophagosome-lysosome fusion. J Mol Biol. 2020; 432(8):2462-82.


11. Hu Y, Reggiori F. Molecular regulation of autophagosome formation. Biochem Soc Trans. 2022; 50(1):55-69.


12. Shin DW. Lipophagy: Molecular mechanisms and implications in metabolic disorders. Mol Cells. 2020; 43(8):686-93.


13. Lucocq JM, Hacker C. Cutting a fine figure: On the use of thin sections in electron microscopy to quantify autophagy. Autophagy. 2013; 9(9):1443-8.


14. Krahmer N, Farese Jr RV, Walther TC. Balancing the fat: lipid droplets and human disease. EMBO Mol Med. 2013; 5(7):905-15.


15. Greenberg AS, Coleman RA, Kraemer FB, McManaman JL, Obin MS, Puri V, et al. The role of lipid droplets in metabolic disease in rodents and humans. J Clin Invest. 2011; 121(6):2102-10.


16. Zhou K, Yao P, He J, Zhao H. Lipophagy in nonliver tissues and some related diseases: Pathogenic and therapeutic implications. J Cell Physiol. 2019; 234(6):7938-47.


17. Jung HS, Chung KW, Kim JW, Kim J, Komatsu M, Tanaka K, et al. Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia. Cell Metab. 2008; 8(4):318-24.


18. Yang L, Li P, Fu S, Calay ES, Hotamisligil GS. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab. 2010; 11(6):467-78.


19. Cai J, Pires KM, Ferhat M, Chaurasia B, Buffolo MA, Smalling R, et al. Autophagy ablation in adipocytes induces insulin resistance and reveals roles for lipid peroxide and Nrf2 signaling in adipose-liver crosstalk. Cell Rep. 2018; 25(7):1708-17.


20. Rovira-Llopis S, Diaz-Morales N, Banuls C, Blas-Garcia A, Polo M, Lopez-Domenech S, et al. Is autophagy altered in the leukocytes of type 2 diabetic patients?. Antioxid Redox Signal. 2015; 23(13):1050-6.


21. Alizadeh S, Mazloom H, Sadeghi A, Emamgholipour S, Golestani A, Noorbakhsh F, et al. Evidence for the link between defective autophagy and inflammation in peripheral blood mononuclear cells of type 2 diabetic patients. J Physiol Biochem. 2018; 74(3):369-79.


22. Hayashi H, Sternlieb I. Lipolysosomes in human hepatocytes. Ultrastructural and cytochemical studies of patients with Wilson's disease. Lab Invest. 1975; 33(1):1-7.


23. Carroti S, Aquilano K, Zalfa F, Ruggiero S, Valentini F, Zingariello M, et al. Lipophagy impairment is associated with disease progression in NAFLD. Front Physiol. 2020; 11:850.


24. Nehemiah JL, Novikoff AB. Unusual lysosomes in hamster hepatocytes. Exp Mol Pathol. 1974; 21(3):398-423.


25. Drevon CA, Hovig T. The effects of cholesterol/fat feeding on lipid levels and morphological structures in liver, kidney and spleen in guinea pigs. Acta Pathol Microbiol Scand A. 1977; 85A(1):1-18.


26. Hayashi H, Hotta Y, Sakamoto N. Electron microscopic study on the floating lipids of human liver. Lysosomal involvement in the fatty liver associated with diabetes mellitus. Acta Pathol Jpn. 1983; 33(5):923-8.

Objavljeno
2023/08/23
Rubrika
Originalni naučni članak