MOLEKULARNI MEHANIZMI UKLJUČENI U NASTANAK STRESA ENDOPLAZMATSKOG RETIKULUMA – ŠTA ZNAMO DO SADA

  • Sašenka Vidičević Novaković Univerzitet u Beogradu, Medicinski fakultet, Beograd, Srbija
Ključne reči: ER stres, UPR, IRE-1α, PERK, ARF6

Sažetak


Endoplazmatski retikulum (ER) predstavlja intracelularnu organelu koja ima ulogu u sintezi i obradi proteina. Kada dođe do narušavanja ravnoteže između potreba ćelija za proteinima i kapaciteta ER za obradu proteina, nefunkcionalni, pogrešno uvijeni ili neuvijeni proteini počinju da se nakupljaju u ER dovodeći do nastanka stresa endoplazmatskog retikuluma (ER stresa). Jedan od načina kojim ćelija prevazilazi ER stres je pokretanje UPR (engl. unfolded protein response). UPR se pokreće kada dođe do aktivacije tri proteina koji se nalaze u membrani ER. Reč je o IRE-1α (inositol requiring enzyme-1α), PERK (protein kinase RNA-like endoplasmic reticulum kinase) i ATF6 (activating transcription factor 6) koji se aktiviraju kada se od njihovog luminalnog domena odvoji ER šaperon GRP78. Aktivacijom ova tri transmembranska senzora pokreću se mehanizmi čiji je cilj obnova funkcije ER. Ukoliko funkcija ER ne bude obnovljena i ukoliko se ne dostigne stanje ravnoteže, pokreće se proces apoptoze kako bi se osigurala ćelijska homeostaza. Aktiviran IRE-1α dovodi do obrade iRNK koja kodira transkripcioni faktor XBP-1 (X-box binding protein-1) i do aktivacije mitogenom aktiviranih kinaza (MAPK) i inflamatornih puteva koji uključuju NFƙB. Aktiviran ATF 6 (ATF6f) funkcioniše kao transkripcioni faktor i povećava ekspresiju gena za XBP-1, dok PERK dovodi fosforilacije, a time inaktivacije eukariotskog faktora inicijacije translacije 2 (eIF2α), što za posledicu ima smanjenu sintezu proteina. Fosforilacija eIF2α dovodi i do selektivne sinteze trasnkripcionog faktora ATF4 koji kod ireverzibilno oštećenih ćelija dovodi do aktivacije ćelijske smrti pokretanjem transkripcije gena za CCAAT-enhancer binding protein homologous protein (CHOP).

Poznato je da ER stres i UPR imaju značajnu ulogu u patogenezi različitih bolesti među koje spadaju dijabetes, inflamacija, tumori i neurodegenerativne bolesti. Poznavanje signalnih puteva UPR, kao i mehanizama kojima je UPR uključen u patogenezu ovih bolesti može biti od velikog značaja u razvoju ciljanih terapeutskih pristupa za lečenje ovih bolesti.

Reference

1.         Fagone P, Jackowski S. Membrane phospholipid synthesis and endoplasmic reticulum function. J Lipid Res. 2009;50:S311-S6.


2.         Oakes SA, Papa FR. The Role of Endoplasmic Reticulum Stress in Human Pathology. Annu Rev Pathol. Mechanisms of Disease. 2015;10(1):173-94.


3.         Schwarz DS, Blower MD. The endoplasmic reticulum: structure, function and response to cellular signaling. Cell Mol Life Sci. 2016;73(1):79-94.


4.         Braakman I, Hebert DN. Protein folding in the endoplasmic reticulum. Cold Spring Harb Perspect Biol. 2013;5(5):a013201-a.


5.         Ruggiano A, Foresti O, Carvalho P. Quality control: ER-associated degradation: protein quality control and beyond. J Cell Biol. 2014;204(6):869-79.


6.         Ryno LM, Wiseman RL, Kelly JW. Targeting unfolded protein response signaling pathways to ameliorate protein misfolding diseases. Curr Opin Chem Biol. 2013;17(3):346-52.


7.         Oshitari T, Hata N, Yamamoto S. Endoplasmic reticulum stress and diabetic retinopathy. Vasc Health Risk Manag. 2008;4(1):115-22.


8.         Li J, Wang JJ, Yu Q, Wang M, Zhang SX. Endoplasmic reticulum stress is implicated in retinal inflammation and diabetic retinopathy. FEBS Lett. 2009;583(9):1521-7.


9.         Tabas I, Ron D. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nat Cell Biol. 2011;13(3):184-90.


10.       Wiseman RL, Mesgarzadeh JS, Hendershot LM. Reshaping endoplasmic reticulum quality control through the unfolded protein response. Mol Cell. 2022;82(8):1477-91.


11.       Walter P, Ron D. The Unfolded Protein Response: From Stress Pathway to Homeostatic Regulation. Science. 2011;334(6059):1081.


12.       Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol. 2007;8(7):519-29.


13.       Hetz C, Saxena S. ER stress and the unfolded protein response in neurodegeneration. Nat Rev Neurol. 2017;13(8):477-91.


14.       Schuck S, Prinz WA, Thorn KS, Voss C, Walter P. Membrane expansion alleviates endoplasmic reticulum stress independently of the unfolded protein response. J Cell Biol. 2009;187(4):525-36.


15.       Mháille AN, McQuaid S, Windebank A, Cunnea P, McMahon J, Samali A, et al. Increased Expression of Endoplasmic Reticulum Stress-Related Signaling Pathway Molecules in Multiple Sclerosis Lesions. J Neuropathol Exp Neurol. 2008;67(3):200-11.


16.       Almanza A, Carlesso A, Chintha C, Creedican S, Doultsinos D, Leuzzi B, et al. Endoplasmic reticulum stress signalling – from basic mechanisms to clinical applications. The FEBS J. 2019;286(2):241-78.


17.       Cornejo VH, Pihán P, Vidal RL, Hetz C. Role of the unfolded protein response in organ physiology: Lessons from mouse models. IUBMB Life. 2013;65(12):962-75.


18.       Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol. 2000;2(6):326-32.


19.       Shen J, Chen X, Hendershot L, Prywes R. ER Stress Regulation of ATF6 Localization by Dissociation of BiP/GRP78 Binding and Unmasking of Golgi Localization Signals. Dev Cell. 2002;3(1):99-111.


20.       Li J, Ni M, Lee B, Barron E, Hinton DR, Lee AS. The unfolded protein response regulator GRP78/BiP is required for endoplasmic reticulum integrity and stress-induced autophagy in mammalian cells. Cell Death Differ. 2008;15(9):1460-71.


21.       Hillary RF, FitzGerald U. A lifetime of stress: ATF6 in development and homeostasis. J Biomed Sci. 2018;25(1):48.


22.       Junjappa RP, Patil P, Bhattarai KR, Kim H-R, Chae H-J. IRE1α Implications in Endoplasmic Reticulum Stress-Mediated Development and Pathogenesis of Autoimmune Diseases. Front Immunol. 2018;9.


23.       Hetz C, Chevet E, Oakes SA. Proteostasis control by the unfolded protein response. Nat Cell Biol. 2015;17(7):829-38.


24.       Maurel M, Chevet E, Tavernier J, Gerlo S. Getting RIDD of RNA: IRE1 in cell fate regulation. Trends Biochem Sci. 2014;39(5):245-54.


25.       Tang G, Minemoto Y, Dibling B, Purcell NH, Li Z, Karin M, et al. Inhibition of JNK activation through NF-κB target genes. Nature. 2001;414(6861):313-7.


26.       Scherer DC, Brockman JA, Chen Z, Maniatis T, Ballard DW. Signal-induced degradation of I kappa B alpha requires site-specific ubiquitination. Proc Natl Acad Sci U S A. 1995;92(24):11259.


27.       Tabary O, Boncoeur E, de Martin R, Pepperkok R, Clément A, Schultz C, et al. Calcium-dependent regulation of NF-κB activation in cystic fibrosis airway epithelial cells. Cell Signal. 2006;18(5):652-60.


28.       van den Berg R, Haenen GRMM, van den Berg H, Bast A. Transcription factor NF-κB as a potential biomarker for oxidative stress. Br J Nutr. 2007;86(S1):S121-S7.


29.       Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding Heather P, et al. Coupling of Stress in the ER to Activation of JNK Protein Kinases by Transmembrane Protein Kinase IRE1. Science. 2000;287(5453):664-6.


30.       Kim I, Xu W, Reed JC. Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nat Rev Drug Discov. 2008;7(12):1013-30.


31.       Lei K, Davis RJ. JNK phosphorylation of Bim-related members of the Bcl2 family induces Bax-dependent apoptosis. Proc Natl Acad Sci U S A. 2003;100(5):2432-7.


32.       Wang X, Ron D. Stress-Induced Phosphorylation and Activation of the Transcription Factor CHOP (GADD153) by p38 MAP Kinase. Science. 1996;272(5266):1347-9.


33.       Lamkanfi M, Kalai M, Vandenabeele P. Caspase-12: an overview. Cell Death Differ. 2004;11(4):365-8.


34.       Yamazaki H, Hiramatsu N, Hayakawa K, Tagawa Y, Okamura M, Ogata R, et al. Activation of the Akt-NF-κB Pathway by Subtilase Cytotoxin through the ATF6 Branch of the Unfolded Protein Response1. J Immunol. 2009;183(2):1480-7.


35.       Harding HP, Zhang Y, Ron D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase. Nature. 1999;397(6716):271-4.


36.       Oyadomari S, Mori M. Roles of CHOP/GADD153 in endoplasmic reticulum stress. Cell Death Differ. 2004;11(4):381-9.


37.       Li G, Mongillo M, Chin K-T, Harding H, Ron D, Marks AR, et al. Role of ERO1-alpha-mediated stimulation of inositol 1,4,5-triphosphate receptor activity in endoplasmic reticulum stress-induced apoptosis. J Cell Biol. 2009;186(6):783-92.


38.       Görlach A, Klappa P, Kietzmann DT. The Endoplasmic Reticulum: Folding, Calcium Homeostasis, Signaling, and Redox Control. Antioxid Redox Signal. 2006;8(9-10):1391-418.


39.       Deng J, Lu Phoebe D, Zhang Y, Scheuner D, Kaufman Randal J, Sonenberg N, et al. Translational Repression Mediates Activation of Nuclear Factor Kappa B by Phosphorylated Translation Initiation Factor 2. Mol Cell Biol. 2004;24(23):10161-8.


40.       Xue X, Piao J-H, Nakajima A, Sakon-Komazawa S, Kojima Y, Mori K, et al. Tumor necrosis factor alpha (TNFalpha) Induces the Unfolded Protein Response (UPR) in a Reactive Oxygen Species (ROS)-dependent Fashion, and the UPR Counteracts ROS Accumulation by TNFalpha. J Biol Chem. 2005;280(40):33917-25.


41.       Pyrko P, Schönthal AH, Hofman FM, Chen TC, Lee AS. The Unfolded Protein Response Regulator GRP78/BiP as a Novel Target for Increasing Chemosensitivity in Malignant Gliomas. Cancer Res. 2007;67(20):9809-16.


42.       Uddin MS, Tewari D, Sharma G, Kabir MT, Barreto GE, Bin-Jumah MN, et al. Molecular Mechanisms of ER Stress and UPR in the Pathogenesis of Alzheimer’s Disease. Mol Neurobiol.  2020;57(7):2902-19.


43.       Bellucci A, Navarria L, Zaltieri M, Falarti E, Bodei S, Sigala S, et al. Induction of the unfolded protein response by α-synuclein in experimental models of Parkinson’s disease. J Neurochem. 2011;116(4):588-605.


44.       Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M, et al. Regulated Translation Initiation Controls Stress-Induced Gene Expression in Mammalian Cells. Mol Cell. 2000;6(5):1099-108.


45.       Delépine M, Nicolino M, Barrett T, Golamaully M, Mark Lathrop G, Julier C. EIF2AK3, encoding translation initiation factor 2-α kinase 3, is mutated in patients with Wolcott-Rallison syndrome. Nat Gen. 2000;25(4):406-9.


46.       Lee A-H, Heidtman K, Hotamisligil GS, Glimcher LH. Dual and opposing roles of the unfolded protein response regulated by IRE1α and XBP1 in proinsulin processing and insulin secretion. Proc Natl Acad Sci U S A. 2011;108(21):8885-90.



47.       Usui M, Yamaguchi S, Tanji Y, Tominaga R, Ishigaki Y, Fukumoto M, et al. Atf6α-null mice are glucose intolerant due to pancreatic β-cell failure on a high-fat diet but partially resistant to diet-induced insulin resistance. Metabolism. 2012;61(8):1118-28.

Objavljeno
2024/10/05
Rubrika
Mini pregledni članak