THE INFLUENCE OF SIGNLE NUCLEOTIDE POLYMORPHISMS ON THE THERAPEUTIC EFFECT OF ANTIRETROVIRAL DRUGS

  • Božana Obradović Univerzitet u Beogradu, Medicinski fakultet, Beograd, Srbija
Keywords: HIV, single nucleotide polymorphisms, metabolic enzymes, metabolic transporters, antiretroviral drugs

Abstract


Background: Availability of combined antiretroviral therapy (cART) has significantly improved the prognosis of HIV infection. In order to control the infection, patients chronically take different groups of antiretroviral drugs, which can lead to numerous unwanted and toxic effects, as well as potential interactions with other co-administered medications and food. Most available antiretroviral drugs are metabolized by cytochrome P450 enzymes and excreted through various transport proteins, which can undergo multiple genetic changes. Single nucleotide polymorphisms (SNPs) has been research subject in various fields, including HIV infection. Variations in the genetic makeup of metabolic enzymes and transporters are particularly noteworthy.

Objective: The aim of this research was to provide a review and analysis of the most common gene polymorphisms encoding metabolic enzymes and transporters that are essential for the pharmacokinetics of antiretroviral drugs.

      Methodology: A literature review was conducted by searching the Pub Med and Medline databases from 1998 to 2022. The search was performed using appropriate keywords such as "cytochrome," "antiretroviral," "genotype," "polymorphism," "pharmacogenetic," "pharmacogenomic," "pharmacokinetic," "variant," and "single nucleotide polymorphism," in combination with "human immunodeficiency virus" and "acquired immunodeficiency syndrome." The identified literature was then reviewed and analyzed.

Results: The clinically most relevant polymorphisms affecting the therapeutic efficacy of antiretroviral drugs include HLA-B5701, CYP2B6 polymorphisms corelated with high plasma concentrations of efavirenz, and UGT1A16 and *28 responsible for individual variations in the pharmacokinetics of dolutegravir.

Conclusion: Genetic variations, including variations in individual nucleotides, as well as other factors such as gender, coexisting medical conditions, and patient-related factors, plays a significant role in therapeutic response. Understanding these factors is of crucial importance for personalized approaches to the treatment of HIV infection and the optimization of therapeutic outcomes.

References

1.     https://www.who.int/teams/global-hiv-hepatitis-and-stis-programmes/hiv/strategic-information/hiv-data-and-statistics  (pristupljeno 24.5.2023.)


2.     EACS Guidelines  v11.1 (pristupljeno 22.5.2023.)


3.     Clark WC. The environment and the genotype in polymorphism. Zool J Linn Soc, 1987; 58:255–262.


4.     Syvänen AC. Accessing genetic variation: genotyping single nucleotide polymorphisms. Nat Rev Genet. 2001;2(12):930-42.


5.     Roden M., McLeod L., Relling V., Williams S., Mensah A., Peterson F. et al. Pharmacogenomics. Lancet. 2019. 394, 521–532.


6.     Mallal S., Nolan D., Witt C., Masel G., Martin AM., Moore C. et al. Association between presence of HLA-B*5701, HLA-DR7, and HLA-DQ3 and hypersensitivity to HIV-1 reverse-transcriptase inhibitor abacavir. Lancet. 2002;359(9308):727-32.


7.     Cihlar T., Ho ES., Lin DC., Mulato AS. Human renal organic anion transporter 1 (hOAT1) and its role in the nephrotoxicity of antiviral nucleotide analogs. Nucleosides Nucleotides Nucleic Acids. 2001;20(4-7):641-8.


8.     Perazella MA., Rosner MH. Drug-Induced Acute Kidney Injury. Clin J Am Soc Nephrol. 2022;17(8):1220-1233.


9.     Waters L., John L., Nelson M. Non-nucleoside reverse transcriptase inhibitors: a review. Int J Clin Pract. 2007; 61(1):105-18.


10.  Pushpakom SP., Liptrott NJ., Rodríguez-Nóvoa S., Labarga P., Soriano V., Albalater M.et al. Genetic variants of ABCC10, a novel tenofovir transporter, are associated with kidney tubular dysfunction. J Infect Dis. 2011;204(1):145-53.


11.  Izzedine H., Launay-Vacher V., Bourry E., Brocheriou I., Karie S., Deray G. Drug-induced glomerulopathies. Expert Opin Drug Saf. 2006;5(1):95-106.


12.  Moroni G., Ponticelli C. Secondary Membranous Nephropathy. A Narrative Review. Front Med (Lausanne). 2020;7:611317.


13.  Rodriguez-Novoa S., Barreiro P., Rendon A., Jimenez-Nacher I., Gonzalez-Lahoz J., Soriano V. Influence of 516G>T polymorphisms at the gene encoding the CYP450-2B6 isoenzyme on efavirenz plasma concentrations in HIV-infected subjects. Clin Infect Dis. 2005; 40:1358-1361.


14.  Yang M, Xu X. Important roles of transporters in the pharmacokinetics of anti-viral nucleoside/nucleotide analogs. Expert Opin Drug Metab Toxicol. 2022;18(7-8):483-505.


15.  Anderson PL., Lamba J., Aquilante CL., Schuetz E., Fletcher CV. Pharmacogenetic characteristics of indinavir, zidovudine, and lamivudine therapy in HIV-infected adults: a pilot study. J Acquir Immune Defic Syndr. 2006 Aug 1;42(4):441-9.


16.  Mendes-Correa MC., Pinho JR., Locarnini S., Yuen L., Sitnik R., Santana RA. et al. High frequency of lamivudine resistance mutations in Brazilian patients co-infected with HIV and hepatitis B. J Med Virol. 2010;82(9):1481-8.


17.  Holzinger ER., Grady B., Ritchie MD., Ribaudo HJ., Acosta EP., Morse GD. Et al. Genome-wide association study of plasma efavirenz pharmacokinetics in AIDS Clinical Trials Group protocols implicates several CYP2B6 variants. Pharmacogenet Genomics. 2012;22(12):858-67.


18.  Martín AS., Gómez AI., García-Berrocal B., Figueroa SC., Sánchez MC., Calvo Hernández. et al. Dose reduction of efavirenz: an observational study describing cost-effectiveness, pharmacokinetics and pharmacogenetics. Pharmacogenomics. 2014;15(7):997-1006.


19.  Leger P., Chirwa S., Turner M., Richardson DM., Baker P., Leonard M.et al. Pharmacogenetics of efavirenz discontinuation for reported central nervous system symptoms appears to differ by race. Pharmacogenet Genomics. 2016;26(10):473-80.


20.  Moltó J., Xinarianos G., Miranda C., Pushpakom S., Cedeño S., Clotet B. et al. Simultaneous pharmacogenetics-based population pharmacokinetic analysis of darunavir and ritonavir in HIV-infected patients. Clin Pharmacokinet. 2013;52(7):543-53.


21.  Daskapan A., Tran QTD., Cattaneo D., Gervasoni C., Resnati C., Stienstra Y. et al. Darunavir Population Pharmacokinetic Model Based on HIV Outpatient Data. Ther Drug Monit. 2019;41(1):59-65.


22.  Chen S., St Jean P., Borland J., Song I., Yeo AJ. et al. 2013. Evaluation of the effect of UGT1A1 polymor- phisms on dolutegravir pharmacokinetics. Phrmacogenomics 15(1):9–16.


23.  Lubomirov R., Arab-Alameddine M., Rotger M., Fayet-Mello A., Martinez R. et al. Pharmacogenetics-based population pharmacokinetic analysis of etravirine in HIV-1 infected individu- als. Pharmacogenet Genom. 2013. 23(1):9–18.


24.  Desta Z., Gammal RS., Gong L., Whirl-Carrillo M., Gaur AH. et al. 2019. Clinical Pharmacogenetics Im- plementation Consortium (CPIC) guideline for CYP2B6 and efavirenz-containing antiretroviral ther- apy. Clin Pharmacol  Ther. 106(4):726–33


25.  Yagura H., Watanabe D., Kushida H., Tomishima K., Togami H. et al. Impact of UGT1A1 gene polymorphisms on plasma dolutegravir trough concentrations and neuropsychiatric adverse events in Japanese individuals infected with HIV-1. BMC Infect Dis. 2017. 17(1):622.


26.  Zucker SD., Qin X., Rouster SD., Yu F., Green RM., et al. Mechanism of indinavir-induced hyper- bilirubinemia. PNAS. 2001. 98(22):12671–76.


27.  Belkhir L., Seguin-Devaux C., Elens L., Pauly C., Gengler N. et al. Impact of UGT1A1 polymor- phisms on Raltegravir and its glucuronide plasma concentrations in a cohort of HIV-1 infected patients. Sci  Rep. 2018.8(1):7359.


28.  Choi M-K, Song I-S. Genetic variants of organic cation transporter 1 (OCT1) and OCT2 signif- icantly reduce lamivudine uptake. Biopharm Drug Dispos. 2012. 33(3):170–78.

Published
2024/05/08
Section
Mini pregledni članak