PREDIKCIJA METASTAZA U LIMFNIM ČVOROVIMA VRATA KOD PAPILARNOG KARCINOMA ŠTITASTE ŽLEZDE KORIŠĆENJEM PRINCIPA MAŠINSKOG UČENJA

  • Marina Popovic Krneta Department of Nuclear Medicine, Institute for Oncology and Radiology of Serbia, 11 000 Belgrade, Serbia
  • Dragana Šobić-Šaranović Faculty of Medicine, University of Belgrade, 11 000 Belgrade, Serbia; Center for Nuclear Medicine with PET, University Clinical Center of Serbia, 11 000 Belgrade, Serbia
  • Ljiljana Mijatović Teodorović Department of Nuclear Medicine, Institute for Oncology and Radiology of Serbia, 11 000 Belgrade, Serbia; Faculty of Medical Sciences, University of Kragujevac, 34 000 Kragujevac, Serbia
Ključne reči: papilarni tiroidni karcinom, mašinsko učenje, limfonodalne metastaze

Sažetak


Incidenca papilarnog tiroidnog karcinoma (PTK) se u poslednje tri decenije konstantno uvećava, čineći ga najčešćim malignim oboljenjem štitaste žlezde. Iako pacijenti sa PTK generalno imaju povoljan ishod, prisustvo metastaza u limfnim čvorovima vrata može značajno uticatati na njihovu prognozu, povećavajući verovatnoću ponovnog javljanja bolesti. Trenutna preoperativna dijagnostika limfonodalnih metastaza uglavnom podrazumeva ultrazvučni pregled vrata, ali osnovno ograničenje ove metode je niska senzitivnost. Kao rezultat niske senzitivnosti, limfonodalne metastaze ostaju neotkrivene tokom pre-operativnog stadiranja bolesti i mogu se kasnije manifestovati kao perzistentna ili rekurentna bolest, zahtevajući dalju evaluaciju i potencijalnu reoperaciju.

Kako bi se suočili sa izazovima dijagnostike limfonodalnih metastaza kod pacijenata sa PTK, razvijeni su različiti modeli za njihovu predikciju. Među modelima predikcije posebnu pažnju privlače modeli mašinskog učenja koji mogu sa većom tačnošću predvideti ishod bolesti i omogućiti odabir optimalnog lečenja za svakog pacijenata individualno. Stoga je ovaj mini-pregledni članak pretežno usmeren na objašnjenje osnovnih principa modela mašinskog učenja kroz primer predikcije metastaza u limfnim nodusima vrata kod pacijenata sa PTK. Pored toga, u radu je dat pregled najčešće korišćenih modela mašinskog učenja uz diskusiju njihove efikasnosti u studijama koje su predikciju limfonodalnih metastaza bazirale na ovom pristupu. Na samom kraju, razmatrani su i najčešći izazovi koji limitiraju implementaciju ovih modela u kliničkoj praksi i identifikovana su ključna područja za njihovo poboljšanje.

Trenutno, modeli mašinskog učenja predstavljaju potencijalno korisno sredstvo za predikciju limfonodalnih metastaza kod pacijenata sa PTK ali su neophodna dalja istraživanja kako bi se potpuno iskoristile mogućnosti ovih modela i omogućila njihova implementacija u sisteme za podršku odlučivanju.

Reference


1.         Filetti S, Durante C, Hartl D, Leboulleux S, Locati LD, Newbold K, et al. Thyroid cancer: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of Oncology. 2019 Dec;30(12):1856–83.


2.         Liu C, Xiao C, Chen J, Li X, Feng Z, Gao Q, et al. Risk factor analysis for predicting cervical lymph node metastasis in papillary thyroid carcinoma: a study of 966 patients. BMC Cancer. 2019 Dec;19(1):622.


3.         Genpeng L, Jianyong L, Jiaying Y, Ke J, Zhihui L, Rixiang G, et al. Independent predictors and lymph node metastasis characteristics of multifocal papillary thyroid cancer. Medicine (Baltimore). 2018 Feb;97(5):e9619.


4.         Liu LS, Liang J, Li JH, Liu X, Jiang L, Long JX, et al. The incidence and risk factors for central lymph node metastasis in cN0 papillary thyroid microcarcinoma: a meta-analysis. Eur Arch Otorhinolaryngol. 2017 Mar;274(3):1327–38.


5.         Back K, Choe JH, Kim JS, Kim JH. Occult contralateral central neck metastasis in papillary thyroid carcinoma with preoperatively documented ipsilateral lateral neck metastasis. European Journal of Surgical Oncology. 2021 Jun;47(6):1339–45.


6.         Sapuppo G, Palermo F, Russo M, Tavarelli M, Masucci R, Squatrito S, et al. Latero-cervical lymph node metastases (N1b) represent an additional risk factor for papillary thyroid cancer outcome. J Endocrinol Invest. 2017 Dec;40(12):1355–63.


7.         Jiang L hao, Yin K xin, Wen Q liang, Chen C, Ge M hua, Tan Z. Predictive Risk-scoring Model For Central Lymph Node Metastasis and Predictors of Recurrence in Papillary Thyroid Carcinoma. Sci Rep. 2020 Jan 20;10(1):710.


8.         Popović Krneta M, Šobić Šaranović D, Mijatović Teodorović L, Krajčinović N, Avramović N, Bojović Ž, et al. Prediction of Cervical Lymph Node Metastasis in Clinically Node-Negative T1 and T2 Papillary Thyroid Carcinoma Using Supervised Machine Learning Approach. JCM. 2023 May 24;12(11):3641.


9.         Haugen BR, Alexander EK, Bible KC, Doherty GM, Mandel SJ, Nikiforov YE, et al. 2015 American Thyroid Association Management Guidelines for Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer: The American Thyroid Association Guidelines Task Force on Thyroid Nodules and Differentiated Thyroid Cancer. Thyroid. 2016 Jan;26(1):1–133.


10.       Zhao H, Li H. Meta-analysis of ultrasound for cervical lymph nodes in papillary thyroid cancer: Diagnosis of central and lateral compartment nodal metastases. European Journal of Radiology. 2019 Mar;112:14–21.


11.       Alabousi M, Alabousi A, Adham S, Pozdnyakov A, Ramadan S, Chaudhari H, et al. Diagnostic Test Accuracy of Ultrasonography vs Computed Tomography for Papillary Thyroid Cancer Cervical Lymph Node Metastasis: A Systematic Review and Meta-analysis. JAMA Otolaryngol Head Neck Surg. 2022 Feb 1;148(2):107.


12.       Ji YB, Lee DW, Song CM, Kim KR, Park CW, Tae K. Accuracy of Intraoperative Determination of Central Node Metastasis by the Surgeon in Papillary Thyroid Carcinoma. Otolaryngol--head neck surg. 2014 Apr;150(4):542–7.


13.       Gonçalves Filho J, Zafereo ME, Ahmad FI, Nixon IJ, Shaha AR, Vander Poorten V, et al. Decision making for the central compartment in differentiated thyroid cancer. Eur J Surg Oncol. 2018 Nov;44(11):1671–8.


14.       Delgado-Oliver E, Vidal-Sicart S, Martínez D, Squarcia M, Mora M, Hanzu FA, et al. Applicability of sentinel lymph node biopsy in papillary thyroid cancer. Q J Nucl Med Mol Imaging 2020 Dec;64(4):400-405


15.       Richter AN, Khoshgoftaar TM. A review of statistical and machine learning methods for modeling cancer risk using structured clinical data. Artificial Intelligence in Medicine. 2018 Aug;90:1–14.


16.       Cuocolo R, Caruso M, Perillo T, Ugga L, Petretta M. Machine Learning in oncology: A clinical appraisal. Cancer Letters. 2020 Jul;481:55–62.


17.       Bertsimas D, Wiberg H. Machine Learning in Oncology: Methods, Applications, and Challenges. JCO Clinical Cancer Informatics. 2020 Nov;(4):885–94.


18.       Lo Vercio L, Amador K, Bannister JJ, Crites S, Gutierrez A, MacDonald ME, et al. Supervised machine learning tools: a tutorial for clinicians. J Neural Eng. 2020 Dec 22;17(6):062001.


19.       Bur AM, Shew M, New J. Artificial Intelligence for the Otolaryngologist: A State of the Art Review. Otolaryngol--head neck surg. 2019 Apr;160(4):603–11.


20.       Bellazzi R, Zupan B. Predictive data mining in clinical medicine: Current issues and guidelines. International Journal of Medical Informatics. 2008 Feb;77(2):81–97.


21.       Alpaydin E. Introduction to machine learning, 2nd editio. MIT Press Cambridge; 2010.


22.       Chao CM, Yu YW, Cheng BW, Kuo YL. Construction the Model on the Breast Cancer Survival Analysis Use Support Vector Machine, Logistic Regression and Decision Tree. J Med Syst. 2014 Oct;38(10):106.


23.       Badillo S, Banfai B, Birzele F, Davydov II, Hutchinson L, Kam‐Thong T, et al. An Introduction to Machine Learning. Clin Pharmacol Ther. 2020 Apr;107(4):871–85.


24.       Sidey-Gibbons JAM, Sidey-Gibbons CJ. Machine learning in medicine: a practical introduction. BMC Med Res Methodol. 2019 Dec;19(1):64.


25.       Huang MW, Chen CW, Lin WC, Ke SW, Tsai CF. SVM and SVM Ensembles in Breast Cancer Prediction. Hernandez-Lemus E, editor. PLoS ONE. 2017 Jan 6;12(1):e0161501.


26.       Marinkovic M, Popovic M, Stojanovic-Rundic S, Nikolic M, Cavic M, Gavrilovic D, et al. Comparison of Different Machine Learning Models in Prediction of Postirradiation Recurrence in Prostate Carcinoma Patients. Chutipongtanate S, editor. BioMed Research International. 2022 Feb 7;2022:1–13.


27.       Najafabadi MM, Villanustre F, Khoshgoftaar TM, Seliya N, Wald R, Muharemagic E. Deep learning applications and challenges in big data analytics. Journal of Big Data. 2015 Dec;2(1):1.


28.       Wu Y, Rao K, Liu J, Han C, Gong L, Chong Y, et al. Machine Learning Algorithms for the Prediction of Central Lymph Node Metastasis in Patients With Papillary Thyroid Cancer. Front Endocrinol. 2020 Oct 21;11:577537.


29.       Zhu J, Zheng J, Li L, Huang R, Ren H, Wang D, et al. Application of Machine Learning Algorithms to Predict Central Lymph Node Metastasis in T1-T2, Non-invasive, and Clinically Node Negative Papillary Thyroid Carcinoma. Front Med. 2021 Mar 9;8:635771.


30.       Feng JW, Ye J, Qi GF, Hong LZ, Wang F, Liu SY, et al. A comparative analysis of eight machine learning models for the prediction of lateral lymph node metastasis in patients with papillary thyroid carcinoma. Front Endocrinol. 2022 Oct 28;13:1004913.


31.       Lai S wei, Fan Y long, Zhu Y hua, Zhang F, Guo Z, Wang B, et al. Machine learning-based dynamic prediction of lateral lymph node metastasis in patients with papillary thyroid cancer. Front Endocrinol. 2022 Oct 10;13:1019037.


32.       Huang Y, Mao Y, Xu L, Wen J, Chen G. Exploring risk factors for cervical lymph node metastasis in papillary thyroid microcarcinoma: construction of a novel population-based predictive model. BMC Endocr Disord. 2022 Nov 4;22(1):269.


33.       Yu Y, Yu Z, Li M, Wang Y, Yan C, Fan J, et al. Model development to predict central lymph node metastasis in cN0 papillary thyroid microcarcinoma by machine learning. Ann Transl Med. 2022 Aug;10(16):892–892.


34.       Liu W, Wang S, Xia X, Guo M. A Proposed Heterogeneous Ensemble Algorithm Model for Predicting Central Lymph Node Metastasis in Papillary Thyroid Cancer. IJGM. 2022 May;Volume 15:4717–32.


35.       Lai S wei, Fan Y long, Zhu Y hua, Zhang F, Guo Z, Wang B, et al. Machine learning-based dynamic prediction of lateral lymph node metastasis in patients with papillary thyroid cancer. Front Endocrinol. 2022 Oct 10;13:1019037.


36.       Lever J. Classification evaluation: It is important to understand both what a classification metric expresses and what it hides. Nature methods. 2016;13(8):603–5.


37.       Rahmani AM, Yousefpoor E, Yousefpoor MS, Mehmood Z, Haider A, Hosseinzadeh M, et al. Machine Learning (ML) in Medicine: Review, Applications, and Challenges. Mathematics. 2021 Nov 21;9(22):2970.


38.       Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images Are More than Pictures, They Are Data. Radiology. 2016 Feb;278(2):563–77.


39.       Lambin P, Leijenaar RTH, Deist TM, Peerlings J, De Jong EEC, Van Timmeren J, et al. Radiomics: the bridge between medical imaging and personalized medicine. Nat Rev Clin Oncol. 2017 Dec;14(12):749–62.


40.       El Jammal T, Guerber A, Prodel M, Fauter M, Sève P, Jamilloux Y. Diagnosing Hemophagocytic Lymphohistiocytosis with Machine Learning: A Proof of Concept. JCM. 2022 Oct 21;11(20):6219.


 41.      Bur AM, Holcomb A, Goodwin S, Woodroof J, Karadaghy O, Shnayder Y, et al. Machine learning to predict occult nodal metastasis in early oral squamous cell carcinoma. Oral Oncology. 2019 May;92:20–5.




 

Objavljeno
2024/02/28
Rubrika
Mini pregledni članak