MOLEKULARNI MEHANIZMI REGULACIJE ERITROCITOPOEZE I STRES ERITROCITOPOEZE

  • sanja_momcilovic Univerzitet u Beogradu, Medicinski fakultet, Beograd, Srbija
Ključne reči: molekularni mehanizmi, eritrocitopoeza, stres eritrocitopoeza

Sažetak


Eritrocitopoeze u bazalnim uslovima stvara nove eritrocite konstantnom brzinom. U adultnom periodu, eritrocitopoeza se odvija u koštanoj srži i ima ogromni kapacitet. Regulacija ovog procesa se ostvaruje posredstvom velikog broja ćelijskih i molekularnih mehanizama koji sinergistički deluju kako bi obezbedili adekvatnu oksigenaciju tkiva a istovremeno izbegavajući probleme sa viskozitetom povezanim sa prekomernom proizvodnjom. Stoga je ovaj process regulisan kako menahizmima pozitivne, tako i mehanizmima negativne povratne sprege. Za razliku od kontinuiranog obnavljanja eritrocita u bazalnim uslovima, u uslovima narušene homeostaze kao što je krvarenje, stres, inflamacija, itd., usled nemogućnosti isporuke dovoljne količine kiseonika u tkiva, dolazi do aktivacije procesa nazvanog stres eritrocitopoeza. Stres eitrocitopoeza predstavlja jedinstven proces koji se, pored koštane srži, odvija i ekstramedularno. Ekstramedularna eritrocitopoeza se pre svega odvija u crvenoj pulpi slezine, gde pod uticajem specifičnih signala nastalih u njenoj mikrosredini, dolazi do nagle ekspanzije nezrelih ćelija eritroidne loze, obezbeđujući na taj način adekvatan odgovor na povećane zahteve organizma za eritrocitopoezom. U ovom radu su objašnjeni osnovni molekularni mehanizmi regulacije eritrocitopoeze u bazalnim uslovima i stres eritrocitopoeze. Posebna pažnja je usmerena na zavisnost molekularnih mehanizama od mikrookruženja u kojem se odvijaju ovi procesi. Razumevanje molekularnih mehanizama koji upravljaju eritrocitopoezom i stres eritrocitopoezom je od velikog značaja za unapređenje terapijskih strategija za hematološke poremećaje.

Reference

1. Paulson RF, Shi L, Wu DC. Stress erythropoiesis: new signals and new stress progenitor cells. Curr Opin Hematol. 2011 May;18(3):139-45.
2. Schoen MW, Hoque S, Witherspoon BJ, Schooley B, Sartor O, Yang YT et al. End of an era for erythropoiesis-stimulating agents in oncology. Int J Cancer. 2020 May;146(10):2829-2835.
3. Mase K, Yamagata K, Yamamoto H, Tsuruya K, Hase H, Nishi S et al. Predictors of hyporesponsiveness to erythropoiesis-stimulating agents in patients with non-dialysis-dependent chronic kidney disease (RADIANCE-CKD Study). Am J Nephrol. 2023 Oct 4
4. Mačukanović-Golubović M, Antić S, Avramović M, Buzurović M, Deljanin Ilić M, Ilić S et al editors. Interna medicina: Poremećaji eritrocitne loze. Niš: Medicinski fakultet Niš; 2009.
5. Palis J. Primitive and definitive erythropoiesis in mammals. Front Physiol. 2014 Jan;5:3.
6. Hattangadi SM, Wong P, Zhang L, Flygare J, Lodish HF. From stem cell to red cell: regulation of erythropoiesis at multiple levels by multiple proteins, RNAs, and chromatin modifications. Blood. 2011 Dec;118(24):6258-68.
7. Halawi R, Moukhadder H, Taher A. Anemia in the elderly: a consequence of aging? Expert Rev Hematol. 2017 Apr;10(4):327-335.
8. Broudy VC, Lin N, Brice M, Nakamoto B, Papayannopoulou T. Erythropoietin receptor characteristics on primary human erythroid cells. Blood. 1991 Jun;77(12):2583-90.
9. Zhang Y, Wang L, Dey S, Alnaeeli M, Suresh S, Rogers H, Teng R, Noguchi CT. Erythropoietin action in stress response, tissue maintenance and metabolism. Int J Mol Sci. 2014 Jun;15(6):10296-333
10. Valent P, Büsche G, Theurl I, Uras IZ, Germing U, Stauder R et all. Normal and pathological erythropoiesis in adults: from gene regulation to targeted treatment concepts. Haematologica. 2018 Oct;103(10):1593-1603.
11. Moriguchi T, Yamamoto M. A regulatory network governing Gata1 and Gata2 gene transcription orchestrates erythroid lineage differentiation. Int J Hematol. 2014 Nov;100(5):417-24.
12. Yien YY, Bieker JJ. EKLF/KLF1, a tissue-restricted integrator of transcription control, chromatin remodeling, and lineage determination. Mol Cell Biol 2013 Jan;33(1):4–13.
13. Kim MY, Yan B, Huang S, Qiu Y. Regulating the Regulators: The Role of Histone Deacetylase 1 (HDAC1) in Erythropoiesis. Int J Mol Sci. 2020 Nov;21(22):8460.
14. Caulier AL, Sankaran VG. Molecular and cellular mechanisms that regulate human erythropoiesis. Blood. 2022 Apr 21;139(16):2450-2459.
15. Bunn HF. Erythropoietin. Cold Spring Harb Perspect Med. 2013 Mar;3(3):a011619.
16. Wu H, Klingmüller U, Besmer P, Lodish HF. Interaction of the erythropoietin and stem-cell-factor receptors. Nature. 1995 Sep;377(6546):242-6.
17. De Maria R, Testa U, Luchetti L et al. Apoptotic role of Fas/Fas ligand system in the regulation of erythropoiesis. Blood 1999; 93: 796-803.
18. Yokoyama T, Etoh T, Kitagawa H, Tsukahara S, Kannan Y. Migration of erythroblastic islands toward the sinusoid as erythroid maturation proceeds in rat bone marrow. J Vet Med Sci. 2003 Apr;65(4):449-52.
19. Javan GT, Salhotra A, Finley SJ, Soni S. Erythroblast macrophage protein (Emp): Past, present, and future. Eur J Haematol. 2018 Jan;100(1):3-9.
20. Sadahira Y, Yoshino T, Monobe Y. Very late activation antigen 4-vascular cell adhesion molecule 1 interaction is involved in the formation of erythroblastic islands. J Exp Med. 1995 Jan;181(1):411-5.
21. Lee G, Lo A, Short SA, Mankelow TJ, Spring F, Parsons SF et all. Targeted gene deletion demonstrates that the cell adhesion molecule ICAM-4 is critical for erythroblastic island formation. Blood. 2006 Sep;108(6):2064-
22. Seu KG, Papoin J, Fessler R, Hom J, Huang G, Mohandas N et all. Unraveling Macrophage Heterogeneity in Erythroblastic Islands. Front Immunol. 2017 Sep;8:1140.
23. Li W, Wang Y, Zhao H, Zhang H, Xu Y, Wang S, et al. Identification and transcriptome analysis of erythroblastic island macrophages. Blood. 2019 Aug;134(5):480–91.
24. Angelillo-Scherrer A, Burnier L, Lambrechts D, Fish RJ, Tjwa M, Plaisance S et all. Role of Gas6 in erythropoiesis and anemia in mice. J Clin Invest. 2008 Feb;118(2):583-96.
25. Tordjman R, Delaire S, Plouët J, Ting S, Gaulard P, Fichelson S, Roméo PH, Lemarchandel V. Erythroblasts are a source of angiogenic factors. Blood. 2001 Apr 1;97(7):1968-74.
26. Akinosoglou KS, Solomou EE, Gogos CA. Malaria: a haematological disease. Hematology. 2012 Mar;17(2):106-14.
27. Majka M, Janowska-Wieczorek A, Ratajczak J, Ehrenman K, Pietrzkowski Z, Kowalska MA et all. Numerous growth factors, cytokines, and chemokines are secreted by human CD34(+) cells, myeloblasts, erythroblasts, and megakaryoblasts and regulate normal hematopoiesis in an autocrine/paracrine manner. Blood. 2001 May 15;97(10):3075-85.
28. Zamai L, Secchiero P, Pierpaoli S, Bassini A, Papa S, Alnemri ES et all. TNF-related apoptosis-inducing ligand (TRAIL) as a negative regulator of normal human erythropoiesis. Blood. 2000 Jun 15;95(12):3716-24.
29. Zermati Y, Fichelson S, Valensi F, Freyssinier JM, Rouyer-Fessard P, Cramer E et all. Transforming growth factor inhibits erythropoiesis by blocking proliferation and accelerating differentiation of erythroid progenitors. Exp Hematol. 2000 Aug;28(8):885-94.
30. De Maria R, Zeuner A, Eramo A, Domenichelli C, Bonci D, Grignani F et all. Negative regulation of erythropoiesis by caspase-mediated cleavage of GATA-1. Nature. 1999 Sep;401(6752):489-93.
31. Libregts SF, Gutiérrez L, de Bruin AM, Wensveen FM, Papadopoulos P, van Ijcken W et all. Chronic IFN-γ production in mice induces anemia by reducing erythrocyte life span and inhibiting erythropoiesis through an IRF-1/PU.1 axis. Blood. 2011 Sep;118(9):2578-88.
32. Valtieri M, Gabbianelli M, Pelosi E, Bassano E, Petti S, Russo G et all. Erythropoietin alone induces erythroid burst formation by human embryonic but not adult BFU-E in unicellular serum-free culture. Blood. 1989 Jul;74(1):460-70.
33. Ulyanova T, Jiang Y, Padilla S, Nakamoto B, Papayannopoulou T. Combinatorial and distinct roles of α₅ and α₄ integrins in stress erythropoiesis in mice. Blood. 2011 Jan;117(3):975-85.
34. Ulyanova T, Padilla SM, Papayannopoulou T. Stage-specific functional roles of integrins in murine erythropoiesis. Exp Hematol. 2014 May;42(5):404-409.e4.
35. Wei Q, Boulais PE, Zhang D, Pinho S, Tanaka M, Frenette PS. Maea expressed by macrophages, but not erythroblasts, maintains postnatal murine bone marrow erythroblastic islands. Blood. 2019 Mar;133(11):1222-1232
36. Momčilović S, Bogdanović A, Milošević MS, Mojsilović S, Marković DC, Kočović DM et all. Macrophages Provide Essential Support for Erythropoiesis, and Extracellular ATP Contributes to a Erythropoiesis-Supportive Microenvironment during Repeated Psychological Stress. Int J Mol Sci. 2023 Jul;24(14):11373.
37. Xiang J, Wu DC, Chen Y, Paulson RF. In vitro culture of stress erythroid progenitors identifies distinct progenitor populations and analogous human progenitors. Blood. 2015 Mar 12;125(11):1803-12. doi: 10.1182/blood-2014-07-591453. Epub 2015 Jan 21. PMID: 25608563; PMCID: PMC4357585.
38. Oda A, Tezuka T, Ueno Y, Hosoda S, Amemiya Y, Notsu C et all. Niche-induced extramedullary hematopoiesis in the spleen is regulated by the transcription factor Tlx1. Sci Rep. 2018 May ;8(1):8308.
39. Wang X, Cho SY, Hu CS, Chen D, Roboz J, Hoffman R. C-X-C motif chemokine 12 influences the development of extramedullary hematopoiesis in the spleens of myelofibrosis patients. Exp Hematol. 2015 Feb;43(2):100-9.e1.
40. Harandi OF, Hedge S, Wu DC, McKeone D, Paulson RF. Murine erythroid short-term radioprotection requires a BMP4-dependent, self-renewing population of stress erythroid progenitors. J Clin Invest. 2010 Dec;120(12):4507-19
41. Perry JM, Harandi OF, Porayette P, Hegde S, Kannan AK, Paulson RF. Maintenance of the BMP4-dependent stress erythropoiesis pathway in the murine spleen requires hedgehog signaling. Blood. 2009 Jan;113(4):911-8.
42. Sieber C, Kopf J, Hiepen C, Knaus P. Recent advances in BMP receptor signaling. Cytokine Growth Factor Rev. 2009 Oct-Dec;20(5-6):343-55.
43. Cole RJ, Regan T. Haemopoietic progenitor cells in prenatal congenitally anaemic 'flexed-tailed' (f/f) mice. Br J Haematol. 1976 Jul;33(3):387-94.
44. Hegde S, Lenox LE, Lariviere A, Porayette P, Perry JM, Yon M et all. An intronic sequence mutated in flexed-tail mice regulates splicing of Smad5. Mamm Genome. 2007 Dec;18(12):852-60.
45. Hao S, Xiang J, Wu DC, Fraser JW, Ruan B, Cai J et all. Gdf15 regulates murine stress erythroid progenitor proliferation and the development of the stress erythropoiesis niche. Blood Adv. 2019 Jul;3(14):2205-2217.
46. Perry JM, Harandi OF, Paulson RF. BMP4, SCF, and hypoxia cooperatively regulate the expansion of murine stress erythroid progenitors. Blood. 2007 May ;109(10):4494-502.
47. Sanja V. Cellular and molecular mechanisms underlying erythropoietic response to chronic stress. 2014.
48. Russell ES. Hereditary anemias of the mouse: a review for geneticists. Adv Genet. 1979;20:357-459.
49. Cipolleschi MG, D'Ippolito G, Bernabei PA, Caporale R, Nannini R, Mariani M et all. Severe hypoxia enhances the formation of erythroid bursts from human cord blood cells and the maintenance of BFU-E in vitro. Exp Hematol. 1997 Oct;25(11):1187-94.
50. Lu L, Broxmeyer HE. Comparative influences of phytohemagglutinin-stimulated leukocyte conditioned medium, hemin, prostaglandin E, and low oxygen tension on colony formation by erythroid progenitor cells in normal human bone marrow. Exp Hematol. 1985 Nov;13(10):989-93.
51. Maeda H, Hotta T, Yamada H. Enhanced colony formation of human hemopoietic stem cells in reduced oxygen tension. Exp Hematol. 1986 Nov;14(10):930-4.
52. Rich IN, Kubanek B. The effect of reduced oxygen tension on colony formation of erythropoietic cells in vitro. Br J Haematol. 1982 Dec;52(4):579-88.
53. Lenox LE, Perry JM, Paulson RF. BMP4 and Madh5 regulate the erythroid response to acute anemia. Blood. 2005 April;105(7):2741-2748.
54. Chen Y, Xiang J, Qian F, Diwakar BT, Ruan B, Hao S, et al. Epo receptor signaling in macrophages alters the splenic niche to promote erythroid differentiation. Blood. 2020 Jul;136(2):235–246.
55. Lau CI, Outram SV, Saldaña JI, Furmanski AL, Dessens JT, Crompton T. Regulation of murine normal and stress-induced erythropoiesis by Desert Hedgehog. Blood. 2012 May;119(20):4741-4751.
56. Bauer A, Tronche F, Wessely O, Kellendonk C, Reichardt HM, Steinlein P et all. The glucocorticoid receptor is required for stress erythropoiesis. Genes Dev. 1999 Nov;13(22):2996-3002.
57. Vignjevic S, Budec M, Markovic D, Dikic D, Mitrovic O, Diklic M et all. Glucocorticoid receptor mediates the expansion of splenic late erythroid progenitors during chronic psychological stress. J Physiol Pharmacol. 2015 Feb;66(1):91-100.
Objavljeno
2025/03/31
Rubrika
Mini pregledni članak