MOLEKULARNI MEHANIZMI REGULACIJE ERITROCITOPOEZE I STRES ERITROCITOPOEZE
Sažetak
Eritrocitopoeze u bazalnim uslovima stvara nove eritrocite konstantnom brzinom. U adultnom periodu, eritrocitopoeza se odvija u koštanoj srži i ima ogromni kapacitet. Regulacija ovog procesa se ostvaruje posredstvom velikog broja ćelijskih i molekularnih mehanizama koji sinergistički deluju kako bi obezbedili adekvatnu oksigenaciju tkiva a istovremeno izbegavajući probleme sa viskozitetom povezanim sa prekomernom proizvodnjom. Stoga je ovaj process regulisan kako menahizmima pozitivne, tako i mehanizmima negativne povratne sprege. Za razliku od kontinuiranog obnavljanja eritrocita u bazalnim uslovima, u uslovima narušene homeostaze kao što je krvarenje, stres, inflamacija, itd., usled nemogućnosti isporuke dovoljne količine kiseonika u tkiva, dolazi do aktivacije procesa nazvanog stres eritrocitopoeza. Stres eitrocitopoeza predstavlja jedinstven proces koji se, pored koštane srži, odvija i ekstramedularno. Ekstramedularna eritrocitopoeza se pre svega odvija u crvenoj pulpi slezine, gde pod uticajem specifičnih signala nastalih u njenoj mikrosredini, dolazi do nagle ekspanzije nezrelih ćelija eritroidne loze, obezbeđujući na taj način adekvatan odgovor na povećane zahteve organizma za eritrocitopoezom. U ovom radu su objašnjeni osnovni molekularni mehanizmi regulacije eritrocitopoeze u bazalnim uslovima i stres eritrocitopoeze. Posebna pažnja je usmerena na zavisnost molekularnih mehanizama od mikrookruženja u kojem se odvijaju ovi procesi. Razumevanje molekularnih mehanizama koji upravljaju eritrocitopoezom i stres eritrocitopoezom je od velikog značaja za unapređenje terapijskih strategija za hematološke poremećaje.
Reference
2. Schoen MW, Hoque S, Witherspoon BJ, Schooley B, Sartor O, Yang YT et al. End of an era for erythropoiesis-stimulating agents in oncology. Int J Cancer. 2020 May;146(10):2829-2835.
3. Mase K, Yamagata K, Yamamoto H, Tsuruya K, Hase H, Nishi S et al. Predictors of hyporesponsiveness to erythropoiesis-stimulating agents in patients with non-dialysis-dependent chronic kidney disease (RADIANCE-CKD Study). Am J Nephrol. 2023 Oct 4
4. Mačukanović-Golubović M, Antić S, Avramović M, Buzurović M, Deljanin Ilić M, Ilić S et al editors. Interna medicina: Poremećaji eritrocitne loze. Niš: Medicinski fakultet Niš; 2009.
5. Palis J. Primitive and definitive erythropoiesis in mammals. Front Physiol. 2014 Jan;5:3.
6. Hattangadi SM, Wong P, Zhang L, Flygare J, Lodish HF. From stem cell to red cell: regulation of erythropoiesis at multiple levels by multiple proteins, RNAs, and chromatin modifications. Blood. 2011 Dec;118(24):6258-68.
7. Halawi R, Moukhadder H, Taher A. Anemia in the elderly: a consequence of aging? Expert Rev Hematol. 2017 Apr;10(4):327-335.
8. Broudy VC, Lin N, Brice M, Nakamoto B, Papayannopoulou T. Erythropoietin receptor characteristics on primary human erythroid cells. Blood. 1991 Jun;77(12):2583-90.
9. Zhang Y, Wang L, Dey S, Alnaeeli M, Suresh S, Rogers H, Teng R, Noguchi CT. Erythropoietin action in stress response, tissue maintenance and metabolism. Int J Mol Sci. 2014 Jun;15(6):10296-333
10. Valent P, Büsche G, Theurl I, Uras IZ, Germing U, Stauder R et all. Normal and pathological erythropoiesis in adults: from gene regulation to targeted treatment concepts. Haematologica. 2018 Oct;103(10):1593-1603.
11. Moriguchi T, Yamamoto M. A regulatory network governing Gata1 and Gata2 gene transcription orchestrates erythroid lineage differentiation. Int J Hematol. 2014 Nov;100(5):417-24.
12. Yien YY, Bieker JJ. EKLF/KLF1, a tissue-restricted integrator of transcription control, chromatin remodeling, and lineage determination. Mol Cell Biol 2013 Jan;33(1):4–13.
13. Kim MY, Yan B, Huang S, Qiu Y. Regulating the Regulators: The Role of Histone Deacetylase 1 (HDAC1) in Erythropoiesis. Int J Mol Sci. 2020 Nov;21(22):8460.
14. Caulier AL, Sankaran VG. Molecular and cellular mechanisms that regulate human erythropoiesis. Blood. 2022 Apr 21;139(16):2450-2459.
15. Bunn HF. Erythropoietin. Cold Spring Harb Perspect Med. 2013 Mar;3(3):a011619.
16. Wu H, Klingmüller U, Besmer P, Lodish HF. Interaction of the erythropoietin and stem-cell-factor receptors. Nature. 1995 Sep;377(6546):242-6.
17. De Maria R, Testa U, Luchetti L et al. Apoptotic role of Fas/Fas ligand system in the regulation of erythropoiesis. Blood 1999; 93: 796-803.
18. Yokoyama T, Etoh T, Kitagawa H, Tsukahara S, Kannan Y. Migration of erythroblastic islands toward the sinusoid as erythroid maturation proceeds in rat bone marrow. J Vet Med Sci. 2003 Apr;65(4):449-52.
19. Javan GT, Salhotra A, Finley SJ, Soni S. Erythroblast macrophage protein (Emp): Past, present, and future. Eur J Haematol. 2018 Jan;100(1):3-9.
20. Sadahira Y, Yoshino T, Monobe Y. Very late activation antigen 4-vascular cell adhesion molecule 1 interaction is involved in the formation of erythroblastic islands. J Exp Med. 1995 Jan;181(1):411-5.
21. Lee G, Lo A, Short SA, Mankelow TJ, Spring F, Parsons SF et all. Targeted gene deletion demonstrates that the cell adhesion molecule ICAM-4 is critical for erythroblastic island formation. Blood. 2006 Sep;108(6):2064-
22. Seu KG, Papoin J, Fessler R, Hom J, Huang G, Mohandas N et all. Unraveling Macrophage Heterogeneity in Erythroblastic Islands. Front Immunol. 2017 Sep;8:1140.
23. Li W, Wang Y, Zhao H, Zhang H, Xu Y, Wang S, et al. Identification and transcriptome analysis of erythroblastic island macrophages. Blood. 2019 Aug;134(5):480–91.
24. Angelillo-Scherrer A, Burnier L, Lambrechts D, Fish RJ, Tjwa M, Plaisance S et all. Role of Gas6 in erythropoiesis and anemia in mice. J Clin Invest. 2008 Feb;118(2):583-96.
25. Tordjman R, Delaire S, Plouët J, Ting S, Gaulard P, Fichelson S, Roméo PH, Lemarchandel V. Erythroblasts are a source of angiogenic factors. Blood. 2001 Apr 1;97(7):1968-74.
26. Akinosoglou KS, Solomou EE, Gogos CA. Malaria: a haematological disease. Hematology. 2012 Mar;17(2):106-14.
27. Majka M, Janowska-Wieczorek A, Ratajczak J, Ehrenman K, Pietrzkowski Z, Kowalska MA et all. Numerous growth factors, cytokines, and chemokines are secreted by human CD34(+) cells, myeloblasts, erythroblasts, and megakaryoblasts and regulate normal hematopoiesis in an autocrine/paracrine manner. Blood. 2001 May 15;97(10):3075-85.
28. Zamai L, Secchiero P, Pierpaoli S, Bassini A, Papa S, Alnemri ES et all. TNF-related apoptosis-inducing ligand (TRAIL) as a negative regulator of normal human erythropoiesis. Blood. 2000 Jun 15;95(12):3716-24.
29. Zermati Y, Fichelson S, Valensi F, Freyssinier JM, Rouyer-Fessard P, Cramer E et all. Transforming growth factor inhibits erythropoiesis by blocking proliferation and accelerating differentiation of erythroid progenitors. Exp Hematol. 2000 Aug;28(8):885-94.
30. De Maria R, Zeuner A, Eramo A, Domenichelli C, Bonci D, Grignani F et all. Negative regulation of erythropoiesis by caspase-mediated cleavage of GATA-1. Nature. 1999 Sep;401(6752):489-93.
31. Libregts SF, Gutiérrez L, de Bruin AM, Wensveen FM, Papadopoulos P, van Ijcken W et all. Chronic IFN-γ production in mice induces anemia by reducing erythrocyte life span and inhibiting erythropoiesis through an IRF-1/PU.1 axis. Blood. 2011 Sep;118(9):2578-88.
32. Valtieri M, Gabbianelli M, Pelosi E, Bassano E, Petti S, Russo G et all. Erythropoietin alone induces erythroid burst formation by human embryonic but not adult BFU-E in unicellular serum-free culture. Blood. 1989 Jul;74(1):460-70.
33. Ulyanova T, Jiang Y, Padilla S, Nakamoto B, Papayannopoulou T. Combinatorial and distinct roles of α₅ and α₄ integrins in stress erythropoiesis in mice. Blood. 2011 Jan;117(3):975-85.
34. Ulyanova T, Padilla SM, Papayannopoulou T. Stage-specific functional roles of integrins in murine erythropoiesis. Exp Hematol. 2014 May;42(5):404-409.e4.
35. Wei Q, Boulais PE, Zhang D, Pinho S, Tanaka M, Frenette PS. Maea expressed by macrophages, but not erythroblasts, maintains postnatal murine bone marrow erythroblastic islands. Blood. 2019 Mar;133(11):1222-1232
36. Momčilović S, Bogdanović A, Milošević MS, Mojsilović S, Marković DC, Kočović DM et all. Macrophages Provide Essential Support for Erythropoiesis, and Extracellular ATP Contributes to a Erythropoiesis-Supportive Microenvironment during Repeated Psychological Stress. Int J Mol Sci. 2023 Jul;24(14):11373.
37. Xiang J, Wu DC, Chen Y, Paulson RF. In vitro culture of stress erythroid progenitors identifies distinct progenitor populations and analogous human progenitors. Blood. 2015 Mar 12;125(11):1803-12. doi: 10.1182/blood-2014-07-591453. Epub 2015 Jan 21. PMID: 25608563; PMCID: PMC4357585.
38. Oda A, Tezuka T, Ueno Y, Hosoda S, Amemiya Y, Notsu C et all. Niche-induced extramedullary hematopoiesis in the spleen is regulated by the transcription factor Tlx1. Sci Rep. 2018 May ;8(1):8308.
39. Wang X, Cho SY, Hu CS, Chen D, Roboz J, Hoffman R. C-X-C motif chemokine 12 influences the development of extramedullary hematopoiesis in the spleens of myelofibrosis patients. Exp Hematol. 2015 Feb;43(2):100-9.e1.
40. Harandi OF, Hedge S, Wu DC, McKeone D, Paulson RF. Murine erythroid short-term radioprotection requires a BMP4-dependent, self-renewing population of stress erythroid progenitors. J Clin Invest. 2010 Dec;120(12):4507-19
41. Perry JM, Harandi OF, Porayette P, Hegde S, Kannan AK, Paulson RF. Maintenance of the BMP4-dependent stress erythropoiesis pathway in the murine spleen requires hedgehog signaling. Blood. 2009 Jan;113(4):911-8.
42. Sieber C, Kopf J, Hiepen C, Knaus P. Recent advances in BMP receptor signaling. Cytokine Growth Factor Rev. 2009 Oct-Dec;20(5-6):343-55.
43. Cole RJ, Regan T. Haemopoietic progenitor cells in prenatal congenitally anaemic 'flexed-tailed' (f/f) mice. Br J Haematol. 1976 Jul;33(3):387-94.
44. Hegde S, Lenox LE, Lariviere A, Porayette P, Perry JM, Yon M et all. An intronic sequence mutated in flexed-tail mice regulates splicing of Smad5. Mamm Genome. 2007 Dec;18(12):852-60.
45. Hao S, Xiang J, Wu DC, Fraser JW, Ruan B, Cai J et all. Gdf15 regulates murine stress erythroid progenitor proliferation and the development of the stress erythropoiesis niche. Blood Adv. 2019 Jul;3(14):2205-2217.
46. Perry JM, Harandi OF, Paulson RF. BMP4, SCF, and hypoxia cooperatively regulate the expansion of murine stress erythroid progenitors. Blood. 2007 May ;109(10):4494-502.
47. Sanja V. Cellular and molecular mechanisms underlying erythropoietic response to chronic stress. 2014.
48. Russell ES. Hereditary anemias of the mouse: a review for geneticists. Adv Genet. 1979;20:357-459.
49. Cipolleschi MG, D'Ippolito G, Bernabei PA, Caporale R, Nannini R, Mariani M et all. Severe hypoxia enhances the formation of erythroid bursts from human cord blood cells and the maintenance of BFU-E in vitro. Exp Hematol. 1997 Oct;25(11):1187-94.
50. Lu L, Broxmeyer HE. Comparative influences of phytohemagglutinin-stimulated leukocyte conditioned medium, hemin, prostaglandin E, and low oxygen tension on colony formation by erythroid progenitor cells in normal human bone marrow. Exp Hematol. 1985 Nov;13(10):989-93.
51. Maeda H, Hotta T, Yamada H. Enhanced colony formation of human hemopoietic stem cells in reduced oxygen tension. Exp Hematol. 1986 Nov;14(10):930-4.
52. Rich IN, Kubanek B. The effect of reduced oxygen tension on colony formation of erythropoietic cells in vitro. Br J Haematol. 1982 Dec;52(4):579-88.
53. Lenox LE, Perry JM, Paulson RF. BMP4 and Madh5 regulate the erythroid response to acute anemia. Blood. 2005 April;105(7):2741-2748.
54. Chen Y, Xiang J, Qian F, Diwakar BT, Ruan B, Hao S, et al. Epo receptor signaling in macrophages alters the splenic niche to promote erythroid differentiation. Blood. 2020 Jul;136(2):235–246.
55. Lau CI, Outram SV, Saldaña JI, Furmanski AL, Dessens JT, Crompton T. Regulation of murine normal and stress-induced erythropoiesis by Desert Hedgehog. Blood. 2012 May;119(20):4741-4751.
56. Bauer A, Tronche F, Wessely O, Kellendonk C, Reichardt HM, Steinlein P et all. The glucocorticoid receptor is required for stress erythropoiesis. Genes Dev. 1999 Nov;13(22):2996-3002.
57. Vignjevic S, Budec M, Markovic D, Dikic D, Mitrovic O, Diklic M et all. Glucocorticoid receptor mediates the expansion of splenic late erythroid progenitors during chronic psychological stress. J Physiol Pharmacol. 2015 Feb;66(1):91-100.