Јавноздравствени значај мониторинга површинских вода, земљишта, ваздуха и биолошког мониторинга и одрживо рударство
Sažetak
Савремени технолошки напредак у рударству укључује увођење еколошких стандарда и мера заштите, које значајно доприносе очувању природних ресурса и спречавању потенцијално штетних утицаја на животну средину омогућавајући рану идентификацију и минимизацију ризика. Рударска индустрија има значајну улогу у економском развоју друштва, док у исто време рударство подразумева примену стратегија за очување стања животне средине и здравља као императив очувања јавног здравља кроз примену савремених метода мониторинга параметара животне средине и здравственог стања становништва.
Рударењем и геолошким истраживањима могу настати потенцијално токсични елементи (ПТЕ), који у одређеним концентрацијама, у различитим медијумима животне средине, представљају изазове како за животну средину, тако и за здравље људи. Мониторинг животне средине је кључна и обавезна стратегија за постизање одрживог рударства. Одрживи развој рударства кроз ефективан мониторинг воде, земљишта, ваздуха и биолошких индикатора у рударским подручјима омогућава очување еколошке равнотеже и здравља људи на територији експлоатације руда.
Reference
Agboola, O., Babatunde, D. E., Isaac Fayomi, O. S., Sadiku, E. R., Popoola, P., Moropeng, L., Yahaya, A., & Mamudu, O. A. (2020). A review on the impact of mining operation: Monitoring, assessment and management. Results in Engineering, 8, 100181. doi.org/10.1016/j.rineng.2020.100181
Ali, B., Loubna, B., & Leila, B. (2021). Impacts of mining activities on soil properties: case studies from Morocco mine sites. Soil Science Annual, 71 (4), 395–407. doi.org/10.37501/soilsa/133011
Arbak, P. (2015). Precautions for the Prevention of Mine Accidents and Related Respiratory Emergencies. Turkish Thoracic Journal / Türk Toraks Dergisi, 16 (1), 25–26. doi.org/10.5152/ttd.2015.007
Behmel, S., Damour, M., Ludwig, R., & Rodriguez, M. J. (2016). Water quality monitoring strategies - A review and future perspectives. The Science of the total environment, 571, 1312–1329. doi.org/10.1016/j.scitotenv.2016.06.235
Cakaj, A., Drzewiecka, K., Hanć, A., Lisiak-Zielińska, M., Ciszewska, L., & Drapikowska, M. (2024). Plants as effective bioindicators for heavy metal pollution monitoring. Environmental Research, 256, 119222. doi.org/10.1016/j.envres.2024.119222
Chovanec, A., Hofer, R., & Schiemer, F. (2003). Chapter 18 Fish as bioindicators. Trace Metals and Other Contaminants in the Environment, 639–676. doi.org/10.1016/s0927-5215(03)80148-0
Ciesielski, T., Pastukhov, M. V., Fodor, P., Bertenyi, Z., Namieśnik, J., & Szefer, P. (2006). Relationships and bioaccumulation of chemical elements in the Baikal seal (Phoca sibirica). Environmental Pollution, 139 (2), 372–384. doi.org/10.1016/j.envpol.2004.12.040
Costa, C., Teixeira, J. P. (2014). Biomonitoring. Encyclopedia of Toxicology. doi.org/10.1016/B978-0-12-386454-3.01000-9
Csavina, J., Field, J., Taylor, M. P., Gao, S., Landázuri, A., Betterton, E. A., & Sáez, A. E. (2012). A review on the importance of metals and metalloids in atmospheric dust and aerosol from mining operations. Science of the Total Environment, 433, 58–73. doi.org/10.1016/j.scitotenv.2012.06.013
Ehlers, M., Kastler, T. (2009). Environmental monitoring. In: J. H. Bullinger (ed.), Technology Guide. Berlin, Heidelberg: Springer. doi.org/10.1007/978-3-540-88546-7_71
European Commision. (2003). Integrated Pollution Prevention and Control (IPPC) Reference Document on the General Principles of Monitoring. Available at: https://eippcb.jrc.ec.europa.eu/sites/default/files/2020-03/superseded_mon_bref_0703.pdf
Frohne, T., Rinklebe, J., & Diaz-Bone, R. A. (2014). Contamination of Floodplain Soils along the Wupper River, Germany, with As, Co, Cu, Ni, Sb, and Zn and the Impact of Pre-definite Redox Variations on the Mobility of These Elements. Soil and Sediment Contamination: An International Journal, 23 (7), 779–799. doi.org/10.1080/15320383.2014.872597
Furnell, E., Bilaniuk, K., Goldbaum, M., Shoaib, M., Wani, O., Tian, X., Chen, Z., Boucher, D., & Bobicki E.R. (2022). Dewatered and Stacked Mine Tailings: A Review. ACS ES & T Engineering, 2 (5), 728–745. doi.org/1021/acsestengg.1c00480
Gorakhki, M. R. H., & Bareither, C. A. (2016). Effects of Salinity on the Geotechnical Characterization of Fine-Grained Soils and Mine Tailings. Geotechnical Testing Journal, 39 (1), 45–58. doi.org/10.1520/GTJ20140283
Gorman, M. R., & Dzombak, D. A. (2018). A review of sustainable mining and resource management: Transitioning from the life cycle of the mine to the life cycle of the mineral. Resources, Conservation and Recycling, 137, 281–291. doi.org/10.1016/j.resconrec.2018.06.001
Hilson, G., & Murck, B. (2000). Sustainable development in the mining industry: clarifying the corporate perspective. Resources Policy, 26 (4), 227–238. doi.org/10.1016/s0301-4207(00)00041-6
Hirvonen, A. (2008). Biomonitoring. Springer EBooks, 355–58. doi.org/10.1007/978-3-540-47648-1_643
Hyder, Z., Siau, K., & Nah, F. (2019). Artificial Intelligence, Machine Learning, and Autonomous Technologies in Mining Industry. Journal of Database Management, 30 (2), 67–79. doi.org/10.4018/jdm.2019040104
International Council on Mining & Metals. (2024). Mining principles: Performance expectations for environmental, social and governance practices. Available at: https://pimcore.icmm.com/website/publications/pdfs/mining-principles/mining-principles.pdf?cb=59962
Jiménez-Oyola, S., Valverde-Armas, P.E., Romero-Crespo, P. et al. (2023). Heavy metal(loid)s contamination in water and sediments in a mining area in Ecuador: a comprehensive assessment for drinking water quality and human health risk. Environ Geochem Health, 45, 4929–4949. doi.org/10.1007/s10653-023-01546-3
Jiang, J., Tang, S., Han, D., Fu, G., Solomatine, D., & Zheng, Y. A. (2020). Comprehensive review on the design and optimization of surface water quality monitoring networks. Environmental Modelling & Software, 132, 104792
Knežević, D., Nišić, D., Cvjetić, A., Ranđelović, D., Sekulić, Z. (2015). Monitoring in the environment - Selected chapters. Beograd: Univerzitet u Beogradu – Rudarsko geološki fakultet. [In Serbian]
Kursunoglu, N., Onder, S., & Onder, M. (2022). Evaluation of Personal Protective Equipment Usage Habit of Mining Employees Using Structural Equation Modeling. Safety and Health at Work, 13 (2). doi.org/10.1016/j.shaw.2022.03.004
Laurence, D. (2005). Safety rules and regulations on mine sites – The problem and a solution. Journal of Safety Research, 36(1), 39–50. doi.org/10.1016/j.jsr.2004.11.004
Laurence, D. (2011). Establishing a sustainable mining operation: an overview. Journal of Cleaner Production, 19 (2–3), 278–284. doi.org/10.1016/j.jclepro.2010.08.019
Loredo, J., Petit-Domínguez, M. D., Ordóñez, A., Galán M. P., Fernández-Martínez, R., Alvarez, R., & Rucandio M. I. (2010). Surface water monitoring in the mercury mining district of Asturias (Spain). Journal of Hazardous Materials, 176, 323–332. doi.org/10.1016/j.jhazmat.2009.11.031
Metcalfe, J. L. (1989). Biological water quality assessment of running waters based on macroinvertebrate communities: History and present status in Europe. Environmental Pollution, 60 (1–2), 101–139. doi.org/10.1016/0269-7491(89)90223-6
Michalak, I., Chojnacka, K. (2014). Effluent Biomonitoring. Encyclopedia of Toxicology. doi.org/10.1016/B978-0-12-386454-3.01008-3
Modoi, O-C., Roba, C., Török Z., & Ozunu A. (2014). Environmental risks due to heavy metal pollution of water resulted from mining wastes in northwest Romania. Environmental Engineering and Management Journal, 13 (9), 2325–2336. http://omicron.ch.tuiasi.ro/EEMJ/
Molina-Villalba, I., Lacasaña, M., Rodríguez-Barranco, M., Hernández, A. F., Gonzalez-Alzaga, B., Aguilar-Garduño, C., & Gil,F. (2015). Biomonitoring of arsenic, cadmium, lead, manganese and mercury in urine and hair of children living near mining and industrial areas. Chemosphere, 124, 83–91. doi.org/10.1016/j.chemosphere.2014.11.016
Nagajyoti, P. C., Lee, K. D., & Sreekanth, T. V. M. (2010). Heavy metals, occurrence and toxicity for plants: a review. Environmental Chemistry Letters, 8 (3), 199–216. doi.org/10.1007/s10311-010-0297-8
Nieder, R., & Benbi, D. (2024). Potentially toxic elements in the environment – a review of sources, sinks, pathways and mitigation measures. Reviews on Environmental Health, 39 (3), 561–575. doi.org/10.1515/reveh-2022-0161
Nordstrom, D.K. (2011). Hydrogeochemical processes governing the origin, transport and fate of major and trace elements from mine wastes and mineralized rock to surface water. Applied Geochemistry, 26, 1777–179. doi.org/10.1016/j.apgeochem.2011.06.002
Onifade, M., Zvarivadza, T., Adebisi, J. A., Said, K. O., Dayo-Olupona, O., Lawal, A. I., & Khandelwal, M. (2004). Advancing toward sustainability: The emergence of green mining technologies and practices. Green and Smart Mining Engineering, 1 (2), 157–174. doi.org/10.1016/j.gsme.2024.05.005
Pavan Kumar, N. (2014). Review on Sustainable Mining Practices. International Research. Journal of Earth Sciences, 2 (10), 26–29. Available at: https://www.isca.me/EARTH_SCI/Archive/v2/i10/4.ISCA-IRJES-2014-030.pdf
Ponting, J., Kelly, T.J., Verhoef, A., Watts, M.J., Sizmur, T. (2021). The impact of increased flooding occurrence on the mobility of potentially toxic elements in floodplain soil – A review. Science of The Total Environment, 754, 142040
Rakete, S., Moonga, G., Wahl, A.-M., Mambrey, V., Shoko, D., Moyo, D., Muteti-Fana, S., Tobollik, M., Steckling-Muschack, N., & Bose-O’Reilly, S. (2021). Biomonitoring of arsenic, cadmium and lead in two artisanal and small-scale gold mining areas in Zimbabwe. Environmental Science and Pollution Research. doi.org/10.1007/s11356-021-15940-w
Rinklebe, J., Antoniadis, V., Shaheen, S. M., Rosche, O., & Altermann, M. (2019). Health risk assessment of potentially toxic elements in soils along the Central Elbe River, Germany. Environment international, 126, 76–88. doi.org/10.1016/j.envint.2019.02.011
Ruppen, D., Chituri Owen, A., Meck Maideyi, L., Pfenninge,r N., & Wehrli, B. (2021). Community-Based Monitoring Detects Sources and Risks of Mining-Related Water Pollution in Zimbabwe. Frontiers in Environmental Science, 9, 754540. doi.org/10.3389/fenvs.2021.754540
Sahu, H. B., Prakash, N., & Jayanthu, S. (2015). Underground Mining for Meeting Environmental Concerns – A Strategic Approach for Sustainable Mining in Future. Procedia Earth and Planetary Science, 11, 232–241. doi.org/10.1016/j.proeps.2015.06.030
U.S. Environmental Protection Agency. (2000, February). Bioaccumulation testing and interpretation for the purpose of sediment quality assessment: Status and needs (Table 4-2). Available at: https://archive.epa.gov/water/archive/polwaste/web/pdf/bioaccum.pdf
U. S. Environmental Protection Agency. (2021). Toxics in the food web. Available at: https://www.epa.gov/salish-sea/toxicsfood-web
U.S. Environmental Protection Agency. (2022). Introduction to biomonitoring topics. Available at: https://www.epa.gov/system/files/documents/2022-10/biomonitoring_intro.pdf
Wang, C., Harbottle, D., Liu, Q., & Xu, Z. (2014). Current state of fine mineral tailings treatment: A critical review on theory and practice. Minerals Engineering, 58, 113–131. doi.org/10.1016/j.mineng.2014.01.018
Wei, W., Ma, R., Sun, Z., Zhou, A., Bu, J., Long, X., & Liu, Y. (2018). Effects of Mining Activities on the Release of Heavy Metals (HMs) in a Typical Mountain Headwater Region, the Qinghai-Tibet Plateau in China. International journal of environmental research and public health, 15 (9): 1987. doi.org/10.3390/ijerph15091987
