The Public Health Importance of Monitoring Surface Water, Soil, Air, Biological Monitoring and Sustainable Mining

  • Igor Dragičević Institute for Public Health Šabac
  • Verica Jovanović Institute of Public Health "Dr. Milan Jovanovic Batut"
Keywords: mining, monitoring, surface water, soil, air, bio-monitoring

Abstract


Modern technological advancements in mining involve the implementation of environmental standards and protective measures that significantly contribute to preserving natural resources and preventing potentially harmful impacts on the environment. These advancements enable early identification and minimisation of risks.

The mining industry plays a vital role in the economic development of society while simultaneously adhering to strategies for environmental preservation and public health protection. This is achieved through modern methods for monitoring environmental parameters and population health. Mining and geological exploration may lead to the presence of potentially toxic elements (PTEs), which in certain concentrations across various environmental media pose challenges to both the environment and human health. Environmental monitoring is a crucial strategy for achieving sustainable mining. Sustainable mining development through effective monitoring of water, soil, air, and biological indicators in mining areas ensures the preservation of ecological balance and public health in regions where mineral exploitation occurs.

References

Agboola, O., Babatunde, D. E., Isaac Fayomi, O. S., Sadiku, E. R., Popoola, P., Moropeng, L., Yahaya, A., & Mamudu, O. A. (2020). A review on the impact of mining operation: Monitoring, assessment and management. Results in Engineering, 8, 100181. doi.org/10.1016/j.rineng.2020.100181

Ali, B., Loubna, B., & Leila, B. (2021). Impacts of mining activities on soil properties: case studies from Morocco mine sites. Soil Science Annual, 71 (4), 395–407. doi.org/10.37501/soilsa/133011

Arbak, P. (2015). Precautions for the Prevention of Mine Accidents and Related Respiratory Emergencies. Turkish Thoracic Journal / Türk Toraks Dergisi, 16 (1), 25–26. doi.org/10.5152/ttd.2015.007

Behmel, S., Damour, M., Ludwig, R., & Rodriguez, M. J. (2016). Water quality monitoring strategies - A review and future perspectives. The Science of the total environment, 571, 1312–1329. doi.org/10.1016/j.scitotenv.2016.06.235

Cakaj, A., Drzewiecka, K., Hanć, A., Lisiak-Zielińska, M., Ciszewska, L., & Drapikowska, M. (2024). Plants as effective bioindicators for heavy metal pollution monitoring. Environmental Research, 256, 119222. doi.org/10.1016/j.envres.2024.119222

Chovanec, A., Hofer, R., & Schiemer, F. (2003). Chapter 18 Fish as bioindicators. Trace Metals and Other Contaminants in the Environment, 639–676. doi.org/10.1016/s0927-5215(03)80148-0

Ciesielski, T., Pastukhov, M. V., Fodor, P., Bertenyi, Z., Namieśnik, J., & Szefer, P. (2006). Relationships and bioaccumulation of chemical elements in the Baikal seal (Phoca sibirica). Environmental Pollution, 139 (2), 372–384. doi.org/10.1016/j.envpol.2004.12.040

Costa, C., Teixeira, J. P. (2014). Biomonitoring. Encyclopedia of Toxicology. doi.org/10.1016/B978-0-12-386454-3.01000-9

Csavina, J., Field, J., Taylor, M. P., Gao, S., Landázuri, A., Betterton, E. A., & Sáez, A. E. (2012). A review on the importance of metals and metalloids in atmospheric dust and aerosol from mining operations. Science of the Total Environment, 433, 58–73. doi.org/10.1016/j.scitotenv.2012.06.013

Ehlers, M., Kastler, T. (2009). Environmental monitoring. In: J. H. Bullinger (ed.), Technology Guide. Berlin, Heidelberg: Springer. doi.org/10.1007/978-3-540-88546-7_71

European Commision. (2003). Integrated Pollution Prevention and Control (IPPC) Reference Document on the General Principles of Monitoring. Available at: https://eippcb.jrc.ec.europa.eu/sites/default/files/2020-03/superseded_mon_bref_0703.pdf

Frohne, T., Rinklebe, J., & Diaz-Bone, R. A. (2014). Contamination of Floodplain Soils along the Wupper River, Germany, with As, Co, Cu, Ni, Sb, and Zn and the Impact of Pre-definite Redox Variations on the Mobility of These Elements. Soil and Sediment Contamination: An International Journal, 23 (7), 779–799. doi.org/10.1080/15320383.2014.872597

Furnell, E., Bilaniuk, K., Goldbaum, M., Shoaib, M., Wani, O., Tian, X., Chen, Z., Boucher, D., & Bobicki E.R. (2022). Dewatered and Stacked Mine Tailings: A Review. ACS ES & T Engineering, 2 (5), 728–745. doi.org/1021/acsestengg.1c00480

Gorakhki, M. R. H., & Bareither, C. A. (2016). Effects of Salinity on the Geotechnical Characterization of Fine-Grained Soils and Mine Tailings. Geotechnical Testing Journal, 39 (1), 45–58. doi.org/10.1520/GTJ20140283

Gorman, M. R., & Dzombak, D. A. (2018). A review of sustainable mining and resource management: Transitioning from the life cycle of the mine to the life cycle of the mineral. Resources, Conservation and Recycling, 137, 281–291. doi.org/10.1016/j.resconrec.2018.06.001

Hilson, G., & Murck, B. (2000). Sustainable development in the mining industry: clarifying the corporate perspective. Resources Policy, 26 (4), 227–238. doi.org/10.1016/s0301-4207(00)00041-6

Hirvonen, A. (2008). Biomonitoring. Springer EBooks, 355–58. doi.org/10.1007/978-3-540-47648-1_643

Hyder, Z., Siau, K., & Nah, F. (2019). Artificial Intelligence, Machine Learning, and Autonomous Technologies in Mining Industry. Journal of Database Management, 30 (2), 67–79. doi.org/10.4018/jdm.2019040104

International Council on Mining & Metals. (2024). Mining principles: Performance expectations for environmental, social and governance practices. Available at: https://pimcore.icmm.com/website/publications/pdfs/mining-principles/mining-principles.pdf?cb=59962

Jiménez-Oyola, S., Valverde-Armas, P.E., Romero-Crespo, P. et al. (2023). Heavy metal(loid)s contamination in water and sediments in a mining area in Ecuador: a comprehensive assessment for drinking water quality and human health risk. Environ Geochem Health, 45, 4929–4949. doi.org/10.1007/s10653-023-01546-3

Jiang, J., Tang, S., Han, D., Fu, G., Solomatine, D., & Zheng, Y. A. (2020). Comprehensive review on the design and optimization of surface water quality monitoring networks. Environmental Modelling & Software, 132, 104792

Knežević, D., Nišić, D., Cvjetić, A., Ranđelović, D., Sekulić, Z. (2015). Monitoring in the environment - Selected chapters. Beograd: Univerzitet u Beogradu – Rudarsko geološki fakultet. [In Serbian]

Kursunoglu, N., Onder, S., & Onder, M. (2022). Evaluation of Personal Protective Equipment Usage Habit of Mining Employees Using Structural Equation Modeling. Safety and Health at Work, 13 (2). doi.org/10.1016/j.shaw.2022.03.004

Laurence, D. (2005). Safety rules and regulations on mine sites – The problem and a solution. Journal of Safety Research, 36(1), 39–50. doi.org/10.1016/j.jsr.2004.11.004

Laurence, D. (2011). Establishing a sustainable mining operation: an overview. Journal of Cleaner Production, 19 (2–3), 278–284. doi.org/10.1016/j.jclepro.2010.08.019

Loredo, J., Petit-Domínguez, M. D., Ordóñez, A., Galán M. P., Fernández-Martínez, R., Alvarez, R., & Rucandio M. I. (2010). Surface water monitoring in the mercury mining district of Asturias (Spain). Journal of Hazardous Materials, 176, 323–332. doi.org/10.1016/j.jhazmat.2009.11.031

Metcalfe, J. L. (1989). Biological water quality assessment of running waters based on macroinvertebrate communities: History and present status in Europe. Environmental Pollution, 60 (1–2), 101–139. doi.org/10.1016/0269-7491(89)90223-6

Michalak, I., Chojnacka, K. (2014). Effluent Biomonitoring. Encyclopedia of Toxicology. doi.org/10.1016/B978-0-12-386454-3.01008-3

Modoi, O-C., Roba, C., Török Z., & Ozunu A. (2014). Environmental risks due to heavy metal pollution of water resulted from mining wastes in northwest Romania. Environmental Engineering and Management Journal, 13 (9), 2325–2336. http://omicron.ch.tuiasi.ro/EEMJ/

Molina-Villalba, I., Lacasaña, M., Rodríguez-Barranco, M., Hernández, A. F., Gonzalez-Alzaga, B., Aguilar-Garduño, C., & Gil,F. (2015). Biomonitoring of arsenic, cadmium, lead, manganese and mercury in urine and hair of children living near mining and industrial areas. Chemosphere, 124, 83–91. doi.org/10.1016/j.chemosphere.2014.11.016

Nagajyoti, P. C., Lee, K. D., & Sreekanth, T. V. M. (2010). Heavy metals, occurrence and toxicity for plants: a review. Environmental Chemistry Letters, 8 (3), 199–216. doi.org/10.1007/s10311-010-0297-8

Nieder, R., & Benbi, D. (2024). Potentially toxic elements in the environment – a review of sources, sinks, pathways and mitigation measures. Reviews on Environmental Health, 39 (3), 561–575. doi.org/10.1515/reveh-2022-0161

Nordstrom, D.K. (2011). Hydrogeochemical processes governing the origin, transport and fate of major and trace elements from mine wastes and mineralized rock to surface water. Applied Geochemistry, 26, 1777–179. doi.org/10.1016/j.apgeochem.2011.06.002

Onifade, M., Zvarivadza, T., Adebisi, J. A., Said, K. O., Dayo-Olupona, O., Lawal, A. I., & Khandelwal, M. (2004). Advancing toward sustainability: The emergence of green mining technologies and practices. Green and Smart Mining Engineering, 1 (2), 157–174. doi.org/10.1016/j.gsme.2024.05.005

Pavan Kumar, N. (2014). Review on Sustainable Mining Practices. International Research. Journal of Earth Sciences, 2 (10), 26–29. Available at: https://www.isca.me/EARTH_SCI/Archive/v2/i10/4.ISCA-IRJES-2014-030.pdf

Ponting, J., Kelly, T.J., Verhoef, A., Watts, M.J., Sizmur, T. (2021). The impact of increased flooding occurrence on the mobility of potentially toxic elements in floodplain soil – A review. Science of The Total Environment, 754, 142040

Rakete, S., Moonga, G., Wahl, A.-M., Mambrey, V., Shoko, D., Moyo, D., Muteti-Fana, S., Tobollik, M., Steckling-Muschack, N., & Bose-O’Reilly, S. (2021). Biomonitoring of arsenic, cadmium and lead in two artisanal and small-scale gold mining areas in Zimbabwe. Environmental Science and Pollution Research. doi.org/10.1007/s11356-021-15940-w

Rinklebe, J., Antoniadis, V., Shaheen, S. M., Rosche, O., & Altermann, M. (2019). Health risk assessment of potentially toxic elements in soils along the Central Elbe River, Germany. Environment international, 126, 76–88. doi.org/10.1016/j.envint.2019.02.011

Ruppen, D., Chituri Owen, A., Meck Maideyi, L., Pfenninge,r N., & Wehrli, B. (2021). Community-Based Monitoring Detects Sources and Risks of Mining-Related Water Pollution in Zimbabwe. Frontiers in Environmental Science, 9, 754540. doi.org/10.3389/fenvs.2021.754540

Sahu, H. B., Prakash, N., & Jayanthu, S. (2015). Underground Mining for Meeting Environmental Concerns – A Strategic Approach for Sustainable Mining in Future. Procedia Earth and Planetary Science, 11, 232–241. doi.org/10.1016/j.proeps.2015.06.030

U.S. Environmental Protection Agency. (2000, February). Bioaccumulation testing and interpretation for the purpose of sediment quality assessment: Status and needs (Table 4-2). Available at: https://archive.epa.gov/water/archive/polwaste/web/pdf/bioaccum.pdf

U. S. Environmental Protection Agency. (2021). Toxics in the food web. Available at: https://www.epa.gov/salish-sea/toxicsfood-web

U.S. Environmental Protection Agency. (2022). Introduction to biomonitoring topics. Available at: https://www.epa.gov/system/files/documents/2022-10/biomonitoring_intro.pdf

Wang, C., Harbottle, D., Liu, Q., & Xu, Z. (2014). Current state of fine mineral tailings treatment: A critical review on theory and practice. Minerals Engineering, 58, 113–131. doi.org/10.1016/j.mineng.2014.01.018

Wei, W., Ma, R., Sun, Z., Zhou, A., Bu, J., Long, X., & Liu, Y. (2018). Effects of Mining Activities on the Release of Heavy Metals (HMs) in a Typical Mountain Headwater Region, the Qinghai-Tibet Plateau in China. International journal of environmental research and public health, 15 (9): 1987. doi.org/10.3390/ijerph15091987

Published
2025/01/13
Section
Review