Development of a Thyme Essential Oil Formulation and Its Effect on Monilinia fructigena
Abstract
Antifungal activity of thyme essential oil against Monilinia fructigena and development of an effective and stable oil formulation for agricultural use were studied in this paper. Bioactivity of the oil itself and its developed formulation, an emulsifiable concentrate (EC), was tested in vitro and in vivo. In vitro experiments, using a slightly modified agar overlay technique, showed that the initially emulsified thyme essential oil, as well as the developed formulation, significantly inhibited mycelial growth of M. fructigena in vitro. Experiments in vivo, performed on inoculated apple fruits, revealed that the formulation successfully decreased oil evaporation from the treated area and provided a significant level of M. fructigena suppression, 64.7-72.1% compared to the control. To our knowledge, an EC formulation of thyme essential oil for agricultural uses had never been developed before. The presented results are initial findings and evaluation of product activity should be continued in the field to determine its efficacy and activity spectrum, and to estimate the economic aspect of its use.
References
Arslan, M., & Dervis, S. (2010). Antifungal activity of essential oils against three vegetative-compatibility groups of Verticillium dahliae. World Journal of Microbiology and Biotechnology, 26(10), 1813-1821. doi:10.1007/s11274-010-0362-2
Bakkali, F., Averbeck, S., Averbeck, D., & Idaomar, M. (2008). Biological effects of essential oils: a review. Food and chemical toxicology , 46(2), 446-75. pmid:17996351. doi:10.1016/j.fct.2007.09.106
Chamberlain, M. (1887). Les essences au point de vue de leurs pro-89-96, prietes antiseptiques. Anneles Institut Pasteur I, 153-154.
Chen, K.N., Chen, C.Y., Lin, Y.C., & Chen, M.J. (2013). Formulation of a Novel Antagonistic Bacterium Based Biopesticide for Fungal Disease Control Using Microencapsulation Techniques. Journal of Agricultural Science, 5(3), 153.
-CIPAC. (1995). CIPAC Handbook - Volume F. Physico-Chemical Methods for Technical and Formulated Pesticides. In W. Dobrat & A. Martin (Eds.), Collaborative International Pesticides. Harpenden Herts, England: Analytical Council Limited.
Cooper, K.E. (1963). The theory of antibiotic inhibition zones. In F. Kavanagh (Ed.), Analytical microbiology. (pp. 1-86). New York, USA: Academic Press.
Côté, M., Tardif, M., & Meldrum, A.J. (2004). Identification of Monilinia fructigena, M. fructicola, M. laxa, and Monilia polystroma on Inoculated and Naturally Infected Fruit Using Multiplex PCR. Plant Disease, 88(11), 1219-1225. doi:10.1094/PDIS.2004.88.11.1219
Ćosić, J., Vrandečić, K., Poštić, J., Jurković, D., & Ravlić, M. (2010). Antifugalno djelovanje eteričnih ulja na porast fitopatogenih gljiva in vitro. Poljoprivreda, 16(2), 25-28.
Daferera, D.J., Ziogas, B.N., & Polissiou, M.G. (2003). The effectiveness of plant essential oils on the growth of Botrytis einerea, Fusarium sp. and Clavibacter michiganensis subsp. michiganensis. Crop Protection, 22(1), 39-44. doi:10.1016/S0261-2194(02)00095-9
Dayan, F.E., Cantrell, C.L., & Duke, S.O. (2009). Natural products in crop protection. Bioorganic & medicinal chemistry, 17(12), 4022-34. pmid:19216080
Grahovac, M., Hrustić, J., Tanović, B., Inđić, D., Vuković, S., Mihajlović, M., & Gvozdenac, S. (2012). In vitro effects of essential oils on Colletotrichum spp. Agriculture and Forestry (Podgorica), 57(4), 7-15.
Gullino, M.L., & Kuijpers, L.A. (1994). Social and political implications of managing plant diseases with restricted fungicides in Europe. Annual review of phytopathology , 32(2), 559-81. pmid:19877842
Hammer, K.A., Carson, C.F., & Riley, T.V. (1999). Antimicrobial activity of essential oils and other plant extracts. Journal of Applied Microbiology, 86(6), 985-990. pmid:10438227. doi:10.1046/j.1365-2672.1999.00780.x
Hammer, K.A., Carson, C.F., & Riley, T.V. (2003). In vitro activity of Melaleuca alternifolia (tea tree) oil against dermatophytes and other filamentous fungi. Journal of Antimicrobial Chemotherapy, 50(2), 195-9. pmid:12161399. doi:10.1093/jac/dkf112
Harrington, T.C., & Wingfield, B.D. (1995). A PCR-based identification method for species of Armillaria. Mycologia, 87, 280-288.
Hrustić, J., Tanović, B., Grahovac, M., Mihajlović, M., Delibašić, G., & Vukša, P. (2011). In vitro i in vivo efekat etarskog ulja timijana na Monilinia fructigena. In: Zbornik rezimea radova XI savetovanja o zaštiti bilja, Zlatibor. 36-37.
Hrustić, J., Tanović, B., Mihajlović, M., Grahovac, M., & Delibašić, G. (2012). Effects of essential oils on Monilinia spp. in vitro. In: Proceedings Annual Mediterranean Group of Pesticide Research (MGPR) Meeting and International Conference on Food and Health Safety: Moving Towards a Sustainable Agriculture, Belgrade, Serbia. 85.
Isman, B.M. (2000). Plant essential oils for pest and disease management. Crop Protection, 19(8-10), 603-608. doi:10.1016/S0261-2194(00)00079-X
Janisiewicz, W.J., & Korsten, L. (2002). Biological control of postharvest diseases of fruits. Annual review of phytopathology, 40, 411-441. pmid:12147766
Janssen, A.M., Scheffer, J.J., & Baerheim, S.A. (1987). Antimicrobial activity of essential oils: A 1976-1986 literature review. Aspects of the test methods. Planta Med, 53(5), 395-8. pmid:3324126. doi:10.1055/s-2006-962755
Lane, C.R. (2002). A synoptic key for differentiation of Monilinia fructicola, M. fructigena and M. laxa, based on examination of cultural characters. EPPO Bulletin, 32(3), 489-493. doi:10.1046/j.1365-2338.2002.00595.x
Moretti, M.D., Sanna-Passino, G., Demotis, S., & Bazzoni, E. (2002). Essential oil formulations Useful as a new tool for insect pest control. AAPS PharmSciTech, 3(2), 1-11.
Morris, J.A., Khettry, A., & Seitz, E.W. (1979). Antimicrobial activity of aroma chemicals and essential oils. Journal of the American Oil Chemists' Society, 56(5), 595-603. pmid:479491. doi:10.1007/BF02660245
Pellecuer, J., & Jacob, M. (1980). Simeon de Buochberg, M. Dusart, G. Attisto, M. Barthez, M. Gourgas, L. Pascal, B. and Tomei, B. Essais d'utilisation d'huiles essentielles de plantes aromatiques mediterraneennes en odontologie conservatrice [pouvoir antibacterien]. Plantes Medicinales et Phytotherapie, 14, 83-98.
Ragsdale, N.N., & Sisler, H.D. (1994). Social and political implications of managing plant diseases with decreased availability of fungicides in the United States. Annual review of phytopathology , 32(1), 545-57. pmid:19877846
Tanović, B., Hrustić, J., & Delibasić, G. (2010). Toxicity of volatile phase of essential oils from aromatic and medicinal plants to apple fruit pathogens in vitro. In: Book of abstracts of 28TH INTERNATIONAL HORTICULTURAL CONGRESS, Lisboa, Portugal. 83.
Tanovic, B., Hrustic, J., Grahovac, M., Mihajlovic, M., Delibasic, G., Kostic, M., & Indic, D. (2012). Effectiveness of fungicides and an essential-oil-based product in the control of grey mould disease in raspberry. Bulgarian Journal of Agricultural Science, 18, 689-695.
Tanović, B., Milijašević, S., Obradović, A., Todorović, B., Rekanović, E., & Milikić, S. (2004). In vitro efekti etarskih ulja iz začinskih i lekovitih biljaka na patogene koji se prenose zemljištem. Pesticidi i fitomedicina, 19(4), 233-240.
Tanović, B., Milijašević, S., Todorović, B., Potočnik, I., & Rekanović, E. (2005). Toksičnost etarskih ulja za Botrytis cinerea Pers. in vitro. Pesticidi i fitomedicina, 20(2), 109-114.
Tanović, B., Potočnik, I., Delibašić, G., Ristić, M., Kostić, M., & Marković, M. (2009). In vitro effect of essential oils from aromatic and medicinal plants on mushroom pathogens: Verticillium fungicola var. fungicola, Mycogone perniciosa, and Cladobotryum sp. Archives of Biological Sciences, 61(2), 231-237. doi:10.2298/ABS0902231T
Tasiwal, V., Benagi, V.I., Hegde, Y.R., Kamanna, B.C., & Naik, K.R. (2009). In vitro evaluation of botanicals, bioagents and fungicides against anthracnose of papaya caused by Colletotrichum gloeosporioides (Penz.) Penz. and Sacc. Karnataka. Journal of Agricultural Sciences, 22(4), 803-806.
Wang, C., & Liu, Z. (2007). Foliar uptake of pesticides: Present status and future challenge. Pesticide Biochemistry and Physiology, 87(1), 1-8. doi:10.1016/j.pestbp.2006.04.004
Zhang, H., Zheng, X., & Xi, Y. (2005). Biological control of postharvest blue mold of oranges by Cryptococcus laurentii (Kufferath) Skinner. BioControl, 50(2), 331-342. doi:10.1007/s10526-004-0452-x
--
Authors retain copyright of the published papers and grant to the publisher the non-exclusive right to publish the article, to be cited as its original publisher in case of reuse, and to distribute it in all forms and media.
The published articles will be distributed under the Creative Commons Attribution ShareAlike 4.0 International license (CC BY-SA). It is allowed to copy and redistribute the material in any medium or format, and remix, transform, and build upon it for any purpose, even commercially, as long as appropriate credit is given to the original author(s), a link to the license is provided, it is indicated if changes were made and the new work is distributed under the same license as the original.
Users are required to provide full bibliographic description of the original publication (authors, article title, journal title, volume, issue, pages), as well as its DOI code. In electronic publishing, users are also required to link the content with both the original article published in Pesticidi i fitomedicina (Pesticides and Phytomedicine) and the licence used.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.