The Use of Vegetative Compatibility Tests for Identification of Biodiversity of Phytopathogenic Fungi

  • Vesna S Krnjaja Institut za stočarstvo
Keywords: VCGs, Genetic diversity, Phytopathogenic fungi, Vegetative compatibility,

Abstract


Visual assessment of phenotypes, performed when two strains of one fungal species are cultivated in a mixed culture on specific media, is known as vegetative or heterokaryotic compatibility or incompatibility test, which enables identification of fungal clones and their classification based on phylogenetic groups. Hyphae of strains that have identical alleles at all vic loci can anastomose into a form of a visible heterokaryon. Strains that divide compatible loci and can anastomose each other belong to a subpopulation termed the vegetative compatibility group (VCG), which is genetically distinguishable from other VCGs. Each VCG is specific regarding its host plant or related host groups and can, but does not have to be virulent on other hosts.

Vegetative compatibility can be established in different ways, but complementary auxotrophic strains or strains formed by spontaneous mutation during nutrition, capable of forming a prototrophic heterokaryon are predominantly used. The nit mutants are considered excellent genetic markers for determination of vegetative compatibility and grouping of strains or clones of one fungus into the same or different VCGs. The ability only to determine whether strains are the same or not, but not the degree of their relatedness using VCG, is a limiting factor  in analyses that could be performed. VCGs are the most efficient when they are employed to detect the presence of a specific strain in a population.

This paper provides an overview of the importance of the phenomenon of vegetative compatibility. Vegetative compatibility is one of the most important genetic traits in ascomycetes by which one subpopulation can be identified as a distinct genetic group. Furthermore, the procedures for isolation, identification and determination of nit mutant phenotypes, and for identification of complementary strains and VCGs are described in detail.

 

Author Biography

Vesna S Krnjaja, Institut za stočarstvo
Odsek za stočnu hranu i ekologiju, naučni savetnik

References

--

Amrita Vishwa Vidyapeetham Virtual Lab. (2012). Isolation and identification of auxotrophic and drug resistant mutants. Retrieved from http://amrita.vlab.co.in/?sub=3&brch=76&sim=1089&cnt=1

Anagnostakis, S.L. (1982). Biological control of chestnut blight. Science, 215(4532), 466-71. pmid:17771259. doi:10.1126/science.215.4532.466

Baayen, R.P., Donnell, O.K., Bonants, P.J., Cigelnik, E., Kroon, L.P., Roebroeck, E.J., & Waalwijk, C. (2000). Gene Genealogies and AFLP Analyses in the Fusarium oxysporum Complex Identify Monophyletic and Nonmonophyletic Formae Speciales Causing Wilt and Rot Disease. Phytopathology, 90(8), 891-900. pmid:18944511

Bowden, R.L., & Leslie, J.F. (1992). Nitrate nonutilizing mutants of Gibberella zeae (Fusarium graminearum) and their use in determining vegetative compatibility. Experimental Mycology, 16, 308-315.

Correll, J.C., Klittich, C.J., & Leslie, J.F. (1987). Nitrate non-utilizing mutants of Fusarium oxysporum and their use in vegetative compatibility tests. Phytopathology, 77(12), 1640-1646. doi:10.1094/Phyto-77-1640

Cove, D.J. (1976). Cholorate toxicity in Aspergillus nidulans: the selection and characterisation of chlorate resistant mutants. Heredity, 36(2), 191-203. pmid:773908. doi:10.1038/hdy.1976.24

Daayf, F., Nicole, E.M., & Geiger, J.P. (1995). Differentiation of Verticillium dahliae populations on the basis of vegetative compatibility tests. Phytopathology, 77, 1640-1646.

Dervis, S., Yetisir, H., Tok, F.M., Kurt, S., & Karaca, F. (2009). Vegetative compatibility groups and pathogenicity of Verticillium dahliae isolates from watermelon in Turkey. African Journal of Agricultural Research, 4(11), 1268-1275.

Elmer, W.H. (1991). Vegetative compatibility groups of Fusarium proliferatum from asparagus and comparisons of virulence, growth rates, and colonization of asparagus residues among groups. Phytopathology, 81(8), 852-857. doi:10.1094/Phyto-81-852

Glass, N.L., Jacobson, D.J., & Shiu, P.K. (2000). The genetics of hyphal fusion and vegetative incompatibility in filamentous ascomycete fungi. Annual review of genetics, 34, 165-186. pmid:11092825

Gordon, T.R., & Martyn, R.D. (1997). The evolutionary biology of Fusarium oxysporum. Annual review of phytopathology, 35, 111-28. pmid:15012517

Jacobson, D.J., & Gordon, T.R. (1988). Vegetative compatibility and self-incompatibility within Fusarium oxysporum f. sp. melonis. Phytopathology, 78, 669-672.

Kistler, H.C. (1997). Genetic Diversity in the Plant-Pathogenic Fungus Fusarium oxysporum. Phytopathology, 87(4), 474-9. pmid:18945129

Kistler, H.C., Alabouvette, C., Baayen, R.P., Bentley, S., Brayford, D., Coddington, A., . . . Donnell, O.K. (1998). Systematic Numbering of Vegetative Compatibility Groups in the Plant Pathogenic Fungus Fusarium oxysporum. Phytopathology , 88(1), 30-2. pmid:18944995

Klein, K.K., & Correll, J.C. (2001). Vegetative compatibility group diversity in Fusarium. In B.A. Summerell, J.F. Leslie, D. Backhouse, W.L. Bryden, & L.W. Burgess (Eds.), Fusarium - Paul E. Nelson Memorial Symposium. (p. 392). St. Paul, Minnesota: APS Press.

Krnjaja, V. (2005). Uloga Fusarium spp. u kompleksu prouzrokovača truleži korena lucerke (Medicago sativa L.). (pp. 1-124). Zemun: Poljoprivredni fakultet, Univerzitet u Beogradu. Doktorska disertacija.

Krnjaja, V., Lević, J., Stanković, S., & Tančić, S. (2008). Pathogenic and genetic characterisation of Fusarium sporotrichioides. Cereal Research Communications, 36(suppl 2), 511-512.

Krnjaja, V., Lević, J., Stanković, S., & Tomić, Z. (2007). Pathogenicity and diversity of vegetative compatibility of Fusarium verticillioides. Proceedings of Natural Science Matica Srpska, 113, 103-111. doi:10.2298/ZMSPN0713103K

Krnjaja, V., Lević, J., Tomić, Z., & Stanković, S. (2007). Diversity of vegetative compatibility of Fusarium oxysporum isolated from alfalfa roots in Serbia. Journal of Mountain Agriculture on the Balkans, 10(5), 973-986.

Krnjaja, V., Lević, J., Stanković, S., & Tančić, S. (2012). Genetic, pathogenic and toxigenic variability of F. proliferatum isolated from maize kernels. African Journal of Biotechnology, 11(20), 4660-4665.

Leslie, J.F. (1993). Fungal vegetative compatibility. Annual review of phytopathology, 31, 127-50. pmid:18643765

Leslie, J.F. (2003). Vegetative compatibility groups. In KSU Laboratory Workshop on Fusarium. (pp. 1-38). Manhatten, KS, USA: Kansas Sate University. Chapter 5D.

Leslie, J.F., & Summerell, A.B. (2006). The Fusarium Laboratory Manual. (p. 388). Ames, Iowa, USA: Blackeell Publishing.

Leslie, J.F., & Yamashiro, C.T. (1997). Effects of the tol mutation on allelic interactions at het loci in Neurospora crassa. Genome, 40(6), 834-40. pmid:9449795

Lević, J. (2008). Vrste roda Fusarium u oblasti poljoprivrede, veterinarske i humane medicine. (p. 1226). Beograd: Institut za kukuruz „Zemun Polje“, Beograd-Zemun i Društvo genetičara Srbije (ed.), Cicero.

Liu, W., & Sundheim, L. (1996). Nitrate nonutilizing mutants and vegetative compatibility groups in Fusarium poae. Fungal Genetics and Biology, 20, 12-17.

Muntanola-Cvetković, M. (1990). Opšta mikologija. (p. 320). Beograd: Načna knjiga.

Pál, K., van Diepeningen, A.D., Varga, J., Hoekstra, R.F., Dyer, P.S., & Debets, A.J.M. (2007). Sexual and vegetative compatibility genes in the aspergilli. Studies in mycology, 59, 19-30. pmid:18490952

Puhalla, J.E. (1985). Classification of strains of Fusarium oxysporum on the bases of vegetative compatibility. Canadian Journal of Botany, 63, 179-183.

Strausbaugh, C.A., Schroth, M.N., Weinhold, A.R., & Hancock, J.G. (1992). Assesment of vegetative compatibility of Verticillium dahliae tester strains and isolates from California potatos. Phytopathology, 82(1), 61-68. doi:10.1094/Phyto-82-61

Swift, C.E., Wickliffe, E.R., & Schwartz, H.F. (2002). Vegetative compatibility groups of Fusarium oxysporum f. sp. cepae from onion in Colorado. Plant Disease, 86, 606-610.

Takehara, T., Kuniyasu, K., Mori, M., & Hagiwara, H. (2003). Use of a Nitrate-Nonutilizing Mutant and Selective Media to Examine Population Dynamics of Fusarium oxysporum f. sp. spinaciae in Soil. Phytopathology, 93(9), 1173-81. pmid:18944103

Taylor, J.W., Jacobson, D.J., & Fisher, M.C. (1999). The evolution of asexual fungi: Reproduction, speciation and classification. Annual review of phytopathology, 37, 197-246. pmid:11701822

Tešić, Ž., & Todorović, M. (1988). Mikrobiologija. Poljoprivredni fakultet. (p. 249). Beograd, Beograd: Naučna knjiga.

Vaillancourt, L.J., & Hanau, R.M. (1994). Nitrate-nonutilizing mutants used to study heterokaryosis and vegetative compatibility in Glomerella graminicola (Colletotrichum graminicola). Experimental Mycology, 18, 311-319.

Woo, S.L., Zoina, A., del Sorbo, G., Lorito, M., Nanni, B., Scala, F., & Noviello, C. (1996). Characterization of Fusarium oxysporum f.sp. phaseoli by pathogenic races, VCGs, RFLPs, and RAPD. Phytopathology, 86(9), 966. doi:10.1094/Phyto-86-966

--

Published
2013/10/29
How to Cite
Krnjaja, V. S. (2013). The Use of Vegetative Compatibility Tests for Identification of Biodiversity of Phytopathogenic Fungi. Pesticides and Phytomedicine / Pesticidi I Fitomedicina, 28(3). https://doi.org/10.2298/pif.v28i3.4293
Section
Review Paper