PRILAGOĐAVANjE STANDARDNOG MODELA MONTE KARLO SIMULACIJE KARAKTERISTIKAMA TRŽIŠTA U NASTAJANjU
Abstract
SAŽETAK: Predmet istraživanja u radu jeste aplikativnost novog, u radu označenog kao kalibrirani model Monte Karlo simulacije za procenu tržišnog rizika na tržištima u nastajanju. U osnovi model predstavlja unapređenu verziju standardnog modela Monte Karlo simulacije. Unapređenje je postignuto inkorporiranjem Cornish-Fisher ekstenzije u standardni model, kako bi se standardni model Monte Karlo simulacije prilagodio karakteristikama tržištima u nastajanju. Glavni cilj rada jeste da se utvrdi da li predloženo rešenje doprinosi unapređenju aplikativnosti standardnog modela Monte Karlo simulacije. U tu svrhu u radu je izvršeno testiranje validnosti standrdnog modela i kalibriranog model na tržištima kapitala pet evropskih zemalja Srbije, Hrvatske, Grčke, Kipra i Rumunije, u kontekstu pravila za validaciju modela vrednosti pri riziku, koja su definisana od strane Bazelskog komiteta za superviziju banaka. Metodologija istraživanja podrazumeva primenu odgovarajuće kvantitativne analize, te primenu odgovarajućeg testa bezuslovnog i uslovnog pokrića i pokazatelja performansi modela. Rezultati istraživanja pokazuju da kalibrirani model Monte Karlo simulacije predstavlja značajno unapređenje standardnog modela Monte Karlo simulacije u pogledu validnosti procene tržišnog rizika na ispitanim tržištima.
References
Alexander, C. (2008), Market Risk Analysis: Volume I, Quantitative Methods in Finance, John Wiley and Sons, Chichester.
Bohdalová, M. (2007), A comparison of Value at Risk methods for measurement of the financial risk, Conference: E-leader, Prague.
Christoffersen, P. (1998), Evaluating Interval Forecasts, International Economic Review, Vol. 39, No. 4, pp. 841–862.
Condamin, L., et al. (2006), Risk Quantification Management, Diagnosis and Hedging, John Wiley and Sons, Chichester.
Crouhy, M., Galai, D., Mark, R. (2006), Essentials of Risk Management, McGraw Hill, New York.
Hunt, J. P., Kennedy, E.J. (2000), Financial Derivatives In Theory And Practice, John Wiley and Sons, Chichester, p. 20.
Jamshidian, F., Zhu, Y. (1997), Scenario Simulation Model: Theory and Methodology, Finance and Stochastics, Vol. 4, No. 1, pp. 43–67.
Jorion, P. (2001), Value at Risk: The New Benchmark for Managing Financial Risk, 2nd edition, McGraw Hill, New York.
Kupiec, P. (1995), Techniques for verifying the approach of risk measurement models, Journal of Derivatives, Vol. 2, No. 4, pp. 73–84.
Levy, G. (2004), Computational Finance: Numerical Methods for Pricing Financial Instruments, Butterworth-Heinemann Elsevier, Oxford.
McLeish, D. (2004), Monte Carlo in Finance, Working paper.
Moskowitz, B., Cafisch, E. R. (1995), Smoothness and dimension reduction in quasy Monte Carlo methos, Working Paper, UCLA Department of Mathematics.
Owen, A. B., Tavella A. D. (1996), Scrambled nets for value at risk calculations, Mimeo, Stanford University.
Paskov, S., Traub, J. (1995), Faster valuation of financial derivatives, Journal of Portfolio Management, No. 22, pp. 113–120.
Perignon, C., Smith, D. R. (2010), The level and quality of Value at Risk disclosure by commercial banks, Journal of Banking and Finance, Vol. 34, No. 2, pp. 362–377.
Pearson, N. (2002), Risk budgeting: Portfolio Problem Solving with Value at Risk, John Wiley and Sons, Chichester.
Pritsker, M. (2001), The Hidden Dangers of Historical Simulation, Board of Governors of the Federal Reserve System, pp. 60–61.
Radivojevic, N., et. al. (2016), „Testing value-at-risk models in emerging markets during crises: a case study on South Eastern European countries”, Journal of Risk Model Validation Vol. 10, No. 2, pp. 57–82.
Radivojevic, N., et al (2016), The new hybrid value at risk approach based on the extreme value theory, Estudio de Economia, Vol. 43, No.1, pp. 29–52.
Radivojević, N., (2014), Upravljanje tržišnim rizicima na tržištima u nastajanju primenom modela vrednosti pri riziku, doktorska disertacija, Ekonomski fakultet u Kragujevcu.
Zangari, P. (1996), A VaR methodology for portfolios that include options, RiskMetrics Monitor, pp. 7–25.