Избор политике одржавања Н-компонентног система који се може поправити коришћењем генетског алгоритма
Sažetak
Типичан производни систем се састоји од великог броја поправљивих компоненти/машина које временом старе и захтевају одржавање. Овај рад предлаже нову методу избора политике одржавања користећи генетски алгоритам. Проблем одржавања је формулисан за н-компонентни систем који се може поправити да би се минимизирали укупни трошкови одржавања. Различите политике одржавања и компоненте које се могу поправити су представљене у облику хромозома, у почетку се различити хромозоми генеришу насумично, затим се процењују и бирају коришћењем вредности погодности, а затим се врши укрштање и функција мутације да би се добио бољи хромозом. Изводи се неколико итерација док се не постигну жељени резултати. Предложени алгоритам је даље објашњен и потврђен кроз илустративни пример.
Reference
Aarab, S., Barkany, A.E., & Khalfi, A.E. (2017). The integration of maintenance plans and production scheduling taking account of outsourcing: a literature review, International Journal of Productivity and Quality Management, 21 (1), 1–22.
Abbas, N.N., Ahmed, T., Shah, S.H.U., Omar, M., & Woo, H. (2019). Investigating the applications of artificial intelligence in cyber security. Scientometrics, 121 (2), 1189-1211.
Afif, M.H., Ghareb, A.S., Saif, A., Bakar, A.A., & Bazighifan, O. (2020). Genetic algorithm rule-based categorization method for textual data mining. Decision Science Letters, 9 (1),37–50.
Ahmad, R., & Kamaruddin S. (2012). An overview of time-based and condition-based maintenance in industrial application. Computers & Industrial Engineering, 63 (1), 135-149.
Arjestan, M.E. (2017). Efficient optimization of multi-objective redundancy allocation problems in series-parallel systems. Decision Science Letters, 6, 307-322.
Azadeh, A., & Zadeh, S.A. (2015). An integrated analytic hierarchy process and fuzzy multiple- criteria-decision-making simulation approach for maintenance policy selection. Simulation, 92 (1), 3-18.
Babu, A.S., Sanghi, U., Rehman, A.U., Shayea, A.M.A., & Sharaf, M.A.F. (2013). A model to derive software maintenance policy decision. International Journal of Productivity and Quality Management, 11 (3), 247–268.
Bevilacqua M., & Braglia, M. (2000). The analytic hierarchy process applied to maintenance strategy selection. Reliability Engineering and System Safety, 70 (1), 71–83.
Costa, C.A.B., Carnero, M.C., & Oliveira, M.D. (2012). A multi-criteria model for auditing a predictive maintenance programme. European Journal of Operational Research, 217 (2), 381– 393.
Curcuru, G., Galante, G., & Lombardo, A. (2010). A predictive maintenance policy with imperfect monitoring. Reliability Engineering and System Safety, 95 (9), 989–997.
da Silva, P.R.N., Negrao, M.M.L.C., Vieira, P.J. & Sanz-Bobi, M.A. (2012). A new methodology of fault location for predictive maintenance of transmission lines. Electrical Power and Energy Systems, 42 (1), 568–574.
Darwish, M.A., Alenezi, A.R., & Goyal, S.K. (2016). Determination of maintenance schedule and process mean of production system. International Journal of Productivity and Quality Management, 17 (2), 258–271.
Dhillon, B.S. (2002). Engineering maintenance- A modern approach. CRC Press. Florida.
Engelbrecht, A.P. (2002). Computational Intelligence: An Introduction. John Wiley & Sons Inc., Hoboken, NJ 07030, USA.
Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, United States.
Guo, B., Song, S., Ghalambor, A., & Lin, T.R. (2014) Offshore Pipelines, 2nd ed. Elsevier, Waltham, USA.
Haupt, R.L., & Haupt, S.E. (2004). Practical Genetic Algorithms. John Wiley & Sons, Inc., Hoboken, New Jersey.
Hsiao, Y.L., Drury, C., Wu, C., & Paquet, V. (2013). Predictive models of safety based on audit findings: Part 1: Model development and reliability. Applied Ergonomics, 44 (2), 261-273.
Hu, J., Zhang, L., & Liang, W. (2012). Opportunistic predictive maintenance for complex multi-component systems based on DBN-HAZOP model. Process Safety and Environmental Protection, 90 (5), 376–388.
Ierace, S., & Cavalieri, S. (2008). Maintenance strategy selection: a comparison between fuzzy logic and analytic hierarchy process. 9th IFAC Workshop on Intelligent Manufacturing Systems, Szczecin. Poland. 228-233.
Joo, S.J., & Min, H. (2013). A multiple objective approach to scheduling the preventive maintenance of modular aircraft components. International Journal of Services and Operations Management, 9 (1), 18 – 31.
Kinnear, K.E. (1994). Advances in Genetic Programming. MIT Press. Cambridge, MA 02142, US.
Kuila, P., Gupta, S.K., & Jana. PK. (2013). A novel evolutionary approach for load balanced clustering problem for wireless sensor networks. Swarm and Evolutionary Computation, 12, 48- 56.
Limmun, W., Borkowski, J. J., & Chomtee, B. (2013). Using a Genetic Algorithm to Generate D-optimal Designs for Mixture Experiments. Quality and Reliability Engineering International, 29 (7), 1055- 1068.
Limmun, W., Chomtee, B., & Borkowski, J. (2019). Constructing model robust mixture designs via weighted G-optimality criterion. International Journal of Industrial Engineering Computations, 10 (4), 473–490.
McCall, J. (2005). Genetic algorithms for modelling and optimization. Journal of Computational and Applied Mathematics, 184 (1), 205–222.
Michalewicz, Z. (1992). Genetic Algorithms + Data Structures = Evolution Programs. Springer- Verlag, Berlin.
Ming Tan, C., & Raghvan, N. (2008). A framework to practical predictive maintenance modeling for multi-state systems. Reliability Engineeing and System Safety, 93 (8), 1138-1150.
Moghaddam, K.S., & Usher, J.S. (2011). Sensitivity analysis and comparison of algorithms in preventive maintenance and replacement scheduling optimization models. Computers & Industrial Engineering, 61 (1), 64-75.
Neves, M.L., Santiago, L.P., & Maia, C.A. (2011). A condition-based maintenance policy and input parameters estimation for deteriorating systems under periodic inspection. Computers & Industrial Engineering, 61 (3), 503–511.
Srivastava, N.K., & Mondal, S. (2015). Predictive maintenance using modified FMECA method. International Journal of Productivity and Quality Management, 16 (3), 267–280.
Srivastava, N.K., & Mondal, S. (2016). Development of predictive maintenance model for N- component repairable system using NHPP models and system availability concept, Global Business Review, 17 (1), 105–115.
Srivastava, N.K., Mondal, S., Chatterjee, N., & Parihar, S. (2018). Identifying critical factors for various maintenance policies: A study on Indian manufacturing sector. International Journal of Productivity and Quality Management, 25 (1), 41-63.
Tsarouhas, P.H. (2015). Evaluation of maintenance management through the overall equipment effectiveness of a yogurt production line in a medium-sized Italian company. International Journal of Productivity and Quality Management, 16 (3), 298–311.
Wang, M., Yu, G., & Yu, D. (2011). Mining typical features for highly cited papers. Scientometrics, 87 (3), 695-706.
You, M.Y., Li, H., & Meng, G. (2011). Control-limit preventive maintenance policies for components subject to imperfect preventive maintenance and variable operational conditions. Reliability Engineering and System Safety, 96 (5), 590–598.
The Author wishes to submit the Work to SJM for publication. To enable SJM to publish the Work and to give effect to the parties’ intention set forth herein, they have agreed to cede the first right to publication and republication in the SJM Journal.
Cession
The Author hereby cedes to SJM, who accepts the cession, to the copyright in and to the paper.
The purpose of the cession is to enable SJM to publish the Work, as first publisher world-wide, and for republication in the SJM Journal, and to grant the right to others to publish the Work world-wide, for so long as such copyright subsists;
SJM shall be entitled to edit the work before publication, as it deems fit, subject to the Authors approval
The Author warrants to SJM that:
- the Author is the owner of the copyright in the Work, whether as author or as reassigned from the Author’s employee and that the Author is entitled to cede the copyright to SJM;
- the paper (or any of its part) is not submitted or accepted for publication in any other Journal;
- the Work is an original work created by the Author;
- the Author has not transferred, ceded, or assigned the copyright, or any part thereof, to any third party; or granted any third party a licence or other right to the copyright, which may affect or detract from the rights granted to SJM in terms of this agreement.
The Author hereby indemnifies the SJM as a body and its individual members, to the fullest extent permitted in law, against all or any claims which may arise consequent to the warranties set forth.
No monetary consideration shall be payable by SJM to the Author for the cession, but SJM shall clearly identify the Author as having produced the Work and ensure that due recognition is given to the Author in any publication of the Work.
Should SJM, in its sole discretion, elect not to publish the Work within 1 year after the date of this agreement, the cession shall lapse and be of no further effect. In such event the copyright shall revert to the Author and SJM shall not publish the Work, or any part thereof, without the Author’s prior written consent.