Sastav koksnog ostatka dobijenog procesom pirolize poljoprivredne i drvne biomase

  • Tijana Kosanić Fakultet tehničkih nauka, Univerzitet u Novom Sadu, Novi Sad, Srbija

Abstract


Kako fosilnih goriva ima sve mawe obnovljiva biomasa postaje sve značajniji izvor energije. Potencijal biomase za snabdevanje velikim količinama energije, uz smanjen uticaj na životnu sredinu u poređenju sa fosilnim gorivima, podstakao je istraživanja i
razvoj sistema za upravljanje, preradu i konverziju biomase u toplotnu i električnu energiju, čvrsta, tečna i gasovita goriva i druge hemijske supstancije i produkte. Eksperimentalno ispitivanje procesa pirolize obavljano je na uzorcima oklaska kukuruza i mešavine drvne biomase koji potiču iz Vojvodine. Nakon procesa pirolize, utvrđeni su prinos, elementarni sastav i toplotna moć koksnog ostatka. Pri razmatranju dobijenih rezultata uzeti su u obzir i podaci koje su drugi istraživači
prikazali u svojim radovima. Prinos koksnog ostatka dobijen eksperimentalnim ispitivanjem procesa pirolize različitih vrsta biomase (oklaska kukuruza i drvne biomase) nije pokazao veće odstupanje. Vrednosti prinosa koksnog ostatka dobijene
eksperimentalnim ispitivanjem bile su uporedive sa vrednostima prinosa koksnog ostatka kod drugih istraživača. Koksni ostatak dobijen pirolizom drvne biomase imao je veću toplotnu moć od koksnog ostatka dobijenog pirolizom oklaska kukuruza.
Podaci o elementarnom sastavu i toplotnoj moći koksnog ostatka koje su dobili drugi istraživači pri sličnim uslovima potvrđuju validnost rezultata.

References

Stojiljković D. D, Perspektive korišćenja biomase i komunalnog otpada, U Energetika i životna sredina, ur. Anđelković M, Srpska akademija nauka i umetnosti, Beograd, 2013.

http://www.pks.rs/ (7.10.2014.)

Jovanović B, Parović M. 2009. Stanje i razvoj biomase u Srbiji. Alternativna energija Srbije, Beograd.

Trninić M, 2015. Modeling and optimization of corn cob pyrolysis, Ph.D. diss, Univerzitet u Beogradu, Mašinski fakultet, Beograd

Lehmann J, Joseph S. 2009. Biochar for environmental management: an introduction. In: Biochar for environmental management-science and technology, eds. Lehmann J, Joseph S, 1-9. London and Sterling, UK and USA: Earthscan Publisher.

Chan K. Y, Van Zwieten L, Meszaros I, Downie A, Joseph S. 2007. Agronomic values of greenwaste biochar as a soil amendment. Australian Journal of Soil Research 45(8): 629–634.

Laird D. A, Brown R. C, Amonette J. E, Lehmann J. 2009. Review of the pyrolysis platform for co-producing bio-oil and biochar. Biofuels, Bioproducts and Biorefineries 3(5): 547–562.

Novak J. M, Busscher W. J, Laird D. A, Ahmedna M, Watts D. M, Niandou M. 2009. Impact of biochar amendment on fertility of a southeastern Coastal Plain soil. Soil Science 174(2): 105–112.

Major J, Rondon M, Molina D, Riha S. J, Lehmann J. 2010. Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant and Soil 333(1-2): 117–128.

Jeffery S, Verheijen F. G. A, van der Velde M, Bastos A. C. 2011. A quantitative review of the effects of biochar application to soils on crop productivity using metaanalysis. Agriculture, Ecosystems and Environment 144(1): 175–187.

Song W, Guo M. 2012. Quality variations of poultry litter biochar generated at different pyrolysis temperatures. Journal of Analytical and Applied Pyrolysis 94: 138–145.

Abdullah H, Wu H. 2009. Biochar as a Fuel: 1. Properties and Grindability of Biochars Produced from the Pyrolysis of Mallee Wood under Slow-Heating Conditions. Energy and Fuels 23(8): 4174–4181.

***, Institut za nizijsko šumarstvo i životnu sredinu, Izveštaj, analiza peleta, Univerzitet u Novom Sadu, Novi Sad, Republika Srbija, 2013.

***, Institut za ratarstvo i povrtarstvo, Izveštaj, analiza peleta, Univerzitet u Novom Sadu, Novi Sad, Republika Srbija, 2013.

***, Izveštaj o ispitivanju br. 72/14, Laboratorija za čvrsta goriva, Rudarski institut Beograd, Republika Srbija, 2014.

ASTM Standard. ASTM standards-D5142-04 standard test methods for proximate

analysis of the analysis sample of coal and coke by instrumental procedures. In: Annual book of ASTM standards, Section 5, Vol. 05.06. West Conshohocken, PA: American Society for Testing and Materials; 2002.

ASTM Standard. ASTM standards-D3176-89(2002) standard practice for ultimate analysis of coal and coke. In: Annual book of ASTM standards, Section 5, Vol. 05.06. West Conshohocken, PA: American Society for Testing and Materials; 2002.

Cao Q, Xie K. C, Bao W. R, Shen S. G. 2004. Pyrolytic behavior of waste corn cob. Bioresource Technology 94 (1): 83 - 89.

Demiral Ì, Eryazıcı A, Şensöz S. 2012. Bio-oil production from pyrolysis of corncob (Zea mays L.). Biomass and Bioenergy 36: 43-49.

Figueiredo J. L, Valenzuela C, Bernalte A, Encinar J. M. 1989. Pyrolysis of holm-oak wood: influence of temperature and particle size. Fuel 68(8): 1012‒1016.

Williams P, Besler S. 1996. The influence of temperature and heating rate on the slow pyrolysis of biomass. Renewable Energy 7(3): 233‒250.

Mullen C. A, Boateng A .A, Goldberg N. M, Lima I. M, Laird D. A, Hicks K. B. 2010. Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis. Biomass and Bioenergy 34(1): 67-74.

Mohan D, Pittman C.U, Bricka M, Smith F, Yanceyd B, Mohammad J, Steele P. H, Alexandre-Franco M. F, Gómez-Serrano V, Gong H. 2007. Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production. Journal of Colloid and Interface Science 310(1): 57‒73.

Di Blasi C, Signorelli G, Di Russo C, Rea G. 1999. Product Distribution from Pyrolysis of Wood and Agricultural Residues. Industrial & Engineering Chemistry Research 38(6): 2216‒2224.

Published
2018/06/10
Section
Original Scientific Paper