POREKLO ĆELIJA ENTERIČKOG NERVNOG SISTEMA I PUTEVI MIGRACIJE TOKOM EMBRIONALNOG RAZVOJA

  • Miloš Đuknić Univerzitet u Beogradu, Medicinski fakultet, Republika Srbija
  • Nela Puškaš Univerzitet u Beogradu, Medicinski fakultet, Institut za histologiju i embriologiju „Prof. dr Aleksandar Đ. Kostić“, Beograd, Republika Srbija
  • Milica Labudović Borović Univerzitet u Beogradu, Medicinski fakultet, Institut za histologiju i embriologiju „Prof. dr Aleksandar Đ. Kostić“, Beograd, Republika Srbija
  • Radmila Janković Univerzitet u Beogradu, Medicinski fakultet, Institut za patologiju „Prof. dr Đorđe Joannović“, Beograd, Republika Srbija
Ključne reči: enterički nervni sistem, embrionalni razvoj, ćelijska migracija, Hiršprungova bolest

Sažetak


Enterički nervni sistem (ENS) predstavljen je kompleksnom mrežom neurona, glijalnih i drugih ćelija unutar zida digestivne cevi. ENS ostvaruje brojne, vitalno važne funkcije u našem organizmu. Tako, ENS reguliše motilitet digestivnog trakta, sekreciju u lumen creva, razmenu tečnosti i elektrolita kroz sluznicu, kao i perfuziju sluznice. Da bi pravilno funkcionisao i ostvarivao ove važne funkcije, neophodan je pravilan embrionalni razvoj ENS. Ćelije ENS nastaju od prekursorskih ćelija poreklom od nervnog grebena. Dve populacije koje doprinose najvećem broju budućih ćelija ENS jesu ćelije vagalnog i sakralnog dela nervnog grebena. Prekursorske ćelije vagalnog dela nervnog grebena ulaze u primitivno crevo u regionu budućeg jednjaka (prednje crevo) i započinju svoju migraciju, preko srednjeg, ka zadnjem crevu, odnosno ka budućem analnom otvoru. Ćelije sakralnog dela nervnog grebena ulaze u region zadnjeg creva prateći ekstrinzička nervna vlakna i nastavljaju svoju migraciju rostralno, ka ćelijama poreklom od vagalnog dela nervnog grebena. Uporedo sa procesom migracije, prekursorske ćelije prolaze i kroz druge važne procese, kao što su proliferacija, neuro-glijalna diferencijacija, gangliogeneza i stvaranje aksonskih puteva, kao i sinaptogeneza. Svi ovi procesi strogo su regulisani brojnim signalnim putevima, od kojih se mnogi još uvek aktivno istražuju. Savremena dostignuća u nauci omogućila su praćenja pojedinačnih ćelija na razvojnom putu i druge metode u istraživanju koje će značajno doprineti razumevanju embrionalnog razvoja ENS. Ovo može imati reperkusije u poboljšanju dijagnostike i terapije razvojnih (npr. Hiršprungova bolest) i drugih poremećaja ENS, ali i oboljenja u kojima disfunkcija ENS značajno doprinosi patogenezi.

Reference

1. Furness JB. The enteric nervous system and neurogastroenterology. Nat Rev Gastroenterol Hepatol
2012; 9(5): 286-94. doi: 10.1038/nrgastro.2012.32

2. Hansen MB. The enteric nervous system I: organization and classification. Pharmacol Toxicol 2003; 92(3):105-13. doi:10.1034/j.1600-0773.2003.t01-1-920301.x

3. Lestarevic S, Lazic M, Jankovic R. Distribution and quantification of elements of the enteric nervous system in the distal rectum of neonates and infants: PS038. Porto Biomed J 2017; 2(5):200. doi:10.1016/j.pbj.2017.07.059

4. Fung C, Vanden Berghe P. Functional circuits and signal processing in the enteric nervous system. Cell Mol Life Sci2020; 77: 4505-22. doi:10.1007/s00018-020-03543-6

5. Furness JB, Callaghan BP, Rivera LR, Cho HJ. The enteric nervous system and gastrointestinal innervation: integrated local and central control. Adv Exp Med Biol 2014; 817: 39-71. doi:10.1007/978-1-4939-0897-4_3

6. Schneider S, Wright CM, Heuckeroth RO. Unexpected roles for the second brain: enteric nervous system as master regulator of bowel function. Annu Rev Physiol 2019; 81: 235-59. doi:10.1146/annurev-physiol-021317-121515

7. Jankovic R. Modern diagnostics of Hirschsprung disease and related disorders. Materia medica 2016; 32(2):1478-82.

8. Jankovic R. Analysis of glial cell index and interstitial cells of Cajal in colorectal biopsies of children with Hirschsprung disease and related disorders [doctoral dissertation]. Belgrade: Faculty of Medicine, University of Belgrade; 2016.

9. Pawolski W, Schmidt MHH. Neuron-Glia Interaction in the Developing and Adult Enteric Nervous System. Cells 2021; 10(1):47. doi:10.3390/cells10010047

10. Rao M, Gershon MD. Enteric nervous system development: what could possibly go wrong? Nat Rev Neurosci 2018; 19(9):552-65. doi: 10.1038/s41583-018-0041-0

11. Nagy N, Goldstein AM. Enteric nervous system development: A crest cell’s journey from neural tube
to colon. Semin Cell Dev Biol 2017; 66:94-106. doi:10.1016/j.semcdb.2017.01.006

12. Obermayr F, Hotta R, Enomoto H, Young HM. Development and developmental disorders of the enteric nervous system. Nat Rev Gastroenterol Hepatol 2013;10(1):43-57. doi: 10.1038/nrgastro.2012.234

13. Diposarosa R, Bustam NA, Sahiratmadja E, Susanto PS, Sribudiani Y. Literature review: enteric nervous system development, genetic and epigenetic regulation in the etiology of Hirschsprung’s disease. Heliyon 2021;7(6):e07308. doi: 10.1016/j.heliyon.2021.e07308

14. Yntema CL, Hammond WS. The origin of intrinsic ganglia of trunk viscera from vagal neural crest in the chick embryo. J Comp Neurol 1954; 101(2):515-41. doi:10.1002/cne.901010212

15. Le Douarin NM. Cell line segregation during peripheral nervous system ontogeny. Science 1986; 231(4745): 1515-22. doi: 10.1126/science.3952494

16. Bronner ME, Le Douarin NM. Development and evolution of the neural crest: an overview. Dev Biol 2012; 366(1):2-9. doi: 10.1016/j.ydbio.2011.12.042

17. Kuo BR, Erickson CA. Regional differences in neural crest morphogenesis. Cell Adh Migr 2010; 4(4):567-85. doi:10.4161/cam.4.4.12890

18. Young HM, Bergner AJ, Simpson MJ, McKeown SJ, Hao MM, Anderson CR et al. Colonizing while migrating: how do individual enteric neural crest cells behave? BMC Biol 2014; 12:23. doi:10.1186/1741-7007-12-23

19. Goldstein AM, Hofstra RM, Burns AJ. Building a brain in the gut: development of the enteric nervous system. Clin Genet 2013; 83(4):307-16. doi: 10.1111/cge.12054

20. Espinosa-Medina I, Jevans B, Boismoreau F, Chettouh Z, Enomoto H, Müller T et al. Dual origin of enteric neurons in vagal Schwann cell precursors and the sympathetic neural crest. Proc Natl Acad Sci USA 2017; 114(45):11980-5. doi: 10.1073/pnas.1710308114

21. Brokhman I, Xu J, Coles B, Razavi R, Engert S, Lickert H,et al. Dual embryonic origin of the mammalian enteric nervous system. Dev Biol 2019; 445(2):256-70. doi:10.1016/j.ydbio.2018.11.014

22. Gammill LS, Gonzalez C, Gu C, Bronner-Fraser M. Guidance of trunk neural crest migration requires neuropilin2/semaphorin 3F signaling. Development 2006; 133(1):99-106. doi:10.1242/dev.02187

23. Escot S, Blavet C, Härtle S, Duband JL, Fournier-Thibault C. Misregulation of SDF1-CXCR4 signaling impairs early cardiac neural crest cell migration leading to conotruncal defects. Circ Res 2013;13(5):505-16. doi:10.1161/CIRCRESAHA.113.301333

24. Wallace AS, Burns AJ. Development of the enteric nervous system, smooth muscle and interstitial cells of  Cajal in the human gastrointestinal tract. Cell Tissue Res 2005; 319(3):367-82. doi:10.1007/s00441-004-1023-2

25. Anderson RB, Stewart AL, Young HM. Phenotypes of neural-crest-derived cells in vagal and sacral pathways. Cell Tissue Res 2006; 323(1):11-25. doi:10.1007/s00441-005-0047-6

26. Nishiyama C, Uesaka T, Manabe T, Yonekura Y, Nagasawa T, Newgreen DF et al. Trans-mesenteric neural crest cells are the principal source of the colonic enteric nervous system. Nat Neurosci 2012; 15(9):1211-8. doi:10.1038/nn.3184

27. Zuhdi N, Ortega B, Giovannone D, Ra H, Reyes M, Asención V et al. Slit molecules prevent entrance of trunk neural crest cells in developing gut. Int J Dev Neurosci 2015; 41:8-16. doi:10.1016/j.ijdevneu.2014.12.003

28. Burns AJ, Le Douarin NM. Enteric nervous system development: analysis of the selective developmental potentialities of vagal and sacral neural crest cells using quail-chick chimeras. Anat Rec 2001; 262(1):16-28. doi:10.1002/1097-0185(20010101)262:1<16::AIDAR1007>3.0.CO;2-O

29. Shepherd I, Eisen J. Development of the zebrafish enteric nervous system. Methods Cell Biol 2011; 101:143-60. doi:10.1016/B978-0-12-387036-0.00006-2

30. Barlow AJ, Wallace AS, Thapar N, Burns AJ. Critical numbers of neural crest cells are required in the pathways from the neural tube to the foregut to ensure complete enteric nervous system formation. Development 2008; 135(9):1681-91. doi:10.1242/dev.017418

31. McKeown SJ, Wallace AS, Anderson RB. Expression and function of cell adhesion molecules during neural crest migration. Dev Biol 2013; 373(2):244-57. doi:10.1016/j.ydbio.2012.10.028

32. Mwizerwa O, Das P, Nagy N, Akbareian SE, Mably JD, Goldstein AM. Gdnf is mitogenic, neurotrophic, and chemoattractive to enteric neural crest cells in the embryonic colon. Dev Dyn 2011; 240(6):1402-11. doi:10.1002/dvdy.22630

33. Zeisel A, Hochgerner H, Lönnerberg P, Johnsson A, Memic F, van der Zwan J et al. Molecular Architecture of the Mouse Nervous System. Cell 2018; 174(4):999-1014. doi:10.1016/j.cell.2018.06.021

34. Lasrado R, Boesmans W, Kleinjung J, Pin C, Bell D, Bhaw L et al. Lineage-dependent spatial and functional organization of the mammalian enteric nervous system. Science 2017; 356(6339):722-6. doi:10.1126/science.aam7511

35. Memic F, Knoflach V, Morarach K, Sadler R, Laranjeira C, Hjerling-Leffler J et al. Transcription and Signaling Regulators in Developing Neuronal subtypes of Mouse and Human Enteric Nervous System. Gastroenterology 2018; 154(3):624-36. doi:10.1053/j.gastro.2017.10.005

36. Jiang Y, Liu MT, Gershon MD. Netrins and DCC in the guidance of migrating neural crest-derived cells in the developing bowel and pancreas. Dev Biol 2003; 258(2):364-84. doi:10.1016/s0012-1606(03)00136-2

37. Ratcliffe EM, D’Autréaux F, Gershon MD. Laminin terminates the netrin/DCC mediated attraction of vagal sensory axons. Dev Neurobiol 2008; 68(7):960-71. doi:10.1002/cne.21027

38. Radenkovic G, Radenkovic D, Velickov A. Development of interstitial cells of Cajal in the human digestive tract as the result of reciprocal induction of mesenchymal and neural crest cells. J Cell Mol Med 2018; 22(2):778-85. doi:10.1111/jcmm.13375

Objavljeno
2022/07/09
Rubrika
Pregledni rad