HIPERBARIČNA OKSIGENACIJA KAO PRETRETMAN I TRETMAN U ISHEMIJSKO-REPERFUZIJSKOM OŠTEĆENJU
Sažetak
Ishemija tkiva podrazumeva nedovoljan dotok krvi u određeno područje tela. Prekid arterijskog snabdevanja krvlju dovodi do disbalansa između metaboličkih potreba i potražnje i razvoja hipoksije tkiva. Hipoksija tkiva indukuje brojne metaboličke promene koje rezultuju inflamacijom, povećanim stvaranjem slobodnih kiseoničnih vrsta i smrću ćelije. Ukoliko se u ishemijskom tkivu uspostavi adekvatan protok krvi doći će do povećanja ćelijskog oštećenja što se označava kao ishemijsko-reperfuzijska povreda. Ishemija i ishemijsko-reperfuzijska povreda nalaze se u osnovni brojnih oboljenja široko zastupljenih u savremenom društvu, poput infarkta miokarda, cerebralnog insulta i akutnog bubrežnog oštećenja. Za sada ne postoji način da se utiče direktno na ćelijsku hipoksiju već je kliničko lečenje hipoksičnih stanja usmereno na modulaciju globalne hipoksemije i povećanje količine kiseonika rastvorenog u krvi. Hiperbarična oksigenacija (HBO) je tretman tokom kog bolesnik udiše 100% kiseonik pod pritiskom od najmanje 1,4 atmosfere. Iako je upotreba hiperbarične terapije zabeležena još u 17.om veku, danas je ovaj tretman odobren za mali broj indikacija.
Reference
1. Atanacković M, Bacetić D, Basta-Jovanović G, Begić-Janeva A, Boričić I, Brašanac D, et al. Patologija. 5th ed. Beograd: Medicinski fakultet Univerziteta u Beogradu, Katedra za patologiju; 2015.
2. Pešić BČ. Patofiziologija: mehanizmi poremećaja zdravlja I deo. 1st ed. Beograd: Medicinski fakultet Univerziteta u Beogradu, CIBID; 2015.
3. Penttila A, Trump B. Studies on the modification of the cellular response to injury. Virchows Archiv B Cell Pathology 1975; 18(1):17-34.
4. Francis A, Baynosa R. Ischaemia-reperfusion injury and hyperbaric oxygen pathways: a review of cellular mechanisms. Diving Hyperb Med 2017; 47(2):110-7. doi: 10.28920/dhm47.2.110-117.
5. Sánchez E. Pathophysiology of ischemia-reperfusion injury and its management with hyperbaric oxygen (HBO): a review. J Emerg Crit Care Med 2019; 3:22. doi: 10.21037/jeccm.2019.04.03
6. Heusch G. Critical Issues for the Translation of Cardioprotection. Circ Res 2017; 120(9):1477-86. doi: 10.1161/CIRCRESAHA.117.310820.
7. Ibáñez B, Heusch G, Ovize M, Van de Werf F. Evolving therapies for myocardial ischemia/reperfusion injury. J Am Coll Cardiol 2015; 65(14):1454-71. doi: 10.1016/j.jacc.2015.02.032. PMID: 25857912.
8. Lee JW, Ko J, Ju C, Eltzschig HK. Hypoxia signaling in human diseases and therapeutic targets. Exp Mol Med 2019; 51(6):1-13. doi: 10.1038/s12276-019-0235-1.
9. Hentia C, Rizzato A, Camporesi E, Yang Z, Muntean DM, Săndesc D, et al. An overview of protective strategies against ischemia/reperfusion injury: The role of hyperbaric oxygen preconditioning. Brain Behav 2018; 8(5):e00959. doi: 10.1002/brb3.959.
10. García-Covarrubias L, Sánchez-Rodríguez EC. Hyperbaric oxygenation therapy, basic concepts. Gac Med Mex 2000; 136(1):45-56.
11. Živković M. Priručnik za hiperbaričnu medicinu. Beograd: Srpska zdravstvena organizacija; 2010.
12. FDA- Food and Drug Administration. Available at: www.fda.gov (20.08.2022.).
13. Francis A, Baynosa R. Ischaemia-reperfusion injury and hyperbaric oxygen pathways: a review of cellular mechanisms. Diving Hyperb Med 2017; 47(2):110-7. doi: 10.28920/dhm47.2.110-117.
14. Wang L, Li W, Kang Z, Liu Y, Deng X, Tao H, et al. Hyperbaric oxygen preconditioning attenuates early apoptosis after spinal cord ischemia in rats. J Neurotrauma 2009; 26(1):55-66. doi: 10.1089/neu.2008.0538.
15. Wu MY, Yiang GT, Liao WT, Tsai AP, Cheng YL, Cheng PW, et al. Current Mechanistic Concepts in Ischemia and Reperfusion Injury. Cell Physiol Biochem 2018; 46(4):1650-67. doi: 10.1159/000489241.
16. Granger DN, Kvietys PR. Reperfusion injury and reactive oxygen species: The evolution of a concept. Redox Biol 2015; 6:524-51. doi: 10.1016/j.redox.2015.08.020. Epub 2015 Oct 8.
17. Chung HY, Baek BS, Song SH, Kim MS, Huh JI, Shim KH, et al. Xanthine dehydrogenase/xanthine oxidase and oxidative stress. Age (Omaha) 1997; 20(3):127-40. doi: 10.1007/s11357-997-0012-2.
18. Paravicini TM, Touyz RM. NADPH oxidases, reactive oxygen species, and hypertension: clinical implications and therapeutic possibilities. Diabetes Care 2008; 31(Suppl 2):S170-80. doi: 10.2337/dc08-s247.
19. Sedeek M, Nasrallah R, Touyz RM, Hébert RL. NADPH oxidases, reactive oxygen species, and the kidney: friend and foe. J Am Soc Nephrol 2013; 24(10):1512-8. doi: 10.1681/ASN.2012111112.
20. Carden DL, Granger DN. Pathophysiology of ischaemia-reperfusion injury. J Pathol 2000; 190(3):255-66. doi:10.1002/(SICI)10969896(200002)190:3<255:AID-PATH526>3.0.CO;2-6.
21. Granger DN, Korthuis RJ. Physiologic mechanisms of postischemic tissue injury. Annu Rev Physiol 1995; 57:311-32. doi: 10.1146/annurev.ph.57.030195.001523. PMID: 7778871.
22. Förstermann U, Sessa WC. Nitric oxide synthases: regulation and function. Eur Heart J 2012; 33(7):829-37. doi: 10.1093/eurheartj/ehr304.
23. Kirby JP, Snyder J, Schuerer DJE, Peters JS, Bochicchio GV. Essentials of Hyperbaric Oxygen Therapy: 2019 Review. Mo Med 2019; 116(3):176-9.
24. Ortega MA, Fraile-Martinez O, García-Montero C, Callejón-Peláez E, Sáez MA, Álvarez-Mon MA, et al. A General Overview on the Hyperbaric Oxygen Therapy: Applications, Mechanisms and Translational Opportunities. Medicina (Kaunas) 2021; 57(9):864. doi: 10.3390/medicina57090864.
25. Hentia C, Rizzato A, Camporesi E, Yang Z, Muntean DM, Săndesc D, Bosco G. An overview of protective strategies against ischemia/reperfusion injury: The role of hyperbaric oxygen preconditioning. Brain Behav 2018; 8(5):e00959. doi: 10.1002/brb3.959.
26. Hu SL, Feng H, Xi GH. Hyperbaric oxygen therapy and preconditioning for ischemic and hemorrhagic stroke. Med Gas Res 2016; 6(4):232-6. doi: 10.4103/2045-9912.196907.
27. Hu Q, Manaenko A, Matei N, Guo Z, Xu T, Tang J, et al. Hyperbaric oxygen preconditioning: a reliable option for neuroprotection. Med Gas Res. 2016 Apr 4;6(1):20-32. doi: 10.4103/2045-9912.179337.
28. Kovacevic S, Ivanov M, Brkic P, Vajic UJ, Mihailovic-Stanojevic N, Nesovic-Ostojic J et al. Hyperbaric oxygen preconditioning and the role of NADPH oxidase inhibition in postischemic acute kidney injury induced in spontaneously hypertensive rats. PLoS One 2020; 15(1):e0226974. doi: 10.1371/journal.pone.0226974.
29. Nesovic Ostojic J, Ivanov M, Mihailovic-Stanojevic N, Karanovic D, Kovacevic S, Brkic P, et al. Hyperbaric Oxygen Preconditioning Upregulates Heme OxyGenase-1 and Anti-Apoptotic Bcl-2 Protein Expression in Spontaneously Hypertensive Rats with Induced Postischemic Acute Kidney Injury. Int J Mol Sci 2021; 22(3):1382. doi: 10.3390/ijms22031382.
30. Losada DM, Jordani ME, Jordani MC, Piccinato MA, Fina CF, Feres O, et al. Should preconditioning hyperbaric oxygenation protect the liver against ischemia-reperfusion injury? An experimental study in a rat model. Transplant Proc 2014; 46(1):56-62. doi: 10.1016/j.transproceed.2013.10.044.
31. Losada DM, Chies AB, Feres O, Chaib E, D'Albuquerque LA, Castro-e-Silva O. Effects of hyperbaric oxygen therapy as hepatic preconditioning in rats submitted to hepatic ischemia/reperfusion injury. Acta Cir Bras 2014; 29(Suppl 2):61-6. doi: 10.1590/s0102-8650201400140012.
32. Xiao YD, Liu YQ, Li JL, Ma XM, Wang YB, Liu YF, et al. Hyperbaric oxygen preconditioning inhibits skin flap apoptosis in a rat ischemia-reperfusion model. J Surg Res 2015; 199(2):732-9. doi: 10.1016/j.jss.2015.06.038.
33. Sunami K, Takeda Y, Hashimoto M, Hirakawa M. Hyperbaric oxygen reduces infarct volume in rats by increasing oxygen supply to the ischemic periphery. Crit Care Med 2000; 28(8):2831-6. doi: 10.1097/00003246-200008000-00025.
34. Hu SL, Feng H, Xi GH. Hyperbaric oxygen therapy and preconditioning for ischemic and hemorrhagic stroke. Med Gas Res 2016; 6(4):232-6. doi: 10.4103/2045-9912.196907.
35. Sharma R, Sharma SK, Mudgal SK, Jelly P, Thakur K. Efficacy of hyperbaric oxygen therapy for diabetic foot ulcer, a systematic review and meta-analysis of controlled clinical trials. Sci Rep 2021; 11(1):2189. doi: 10.1038/s41598-021-81886-1