UTICAJ 2,4-DIAMINOBUTERNE KISELINE NA PROTEINE KOJI UČESTVUJU U RAZVIĆU MORFOMETRIJSKI MERLJIVIH PARAMETARA OKA KOD ZEBRICE: IN SILICO ANALIZA
Sažetak
Uvod/cilj: 2,4- diaminobuterna kiselina (2,4-DABA), ekscitatorna amino-kiselina sa dokazanim neurotoksičnim efektom se nalazi u vodenim ekosistemima, sa potencijalom za akumulaciju u biljnim i u životinjskim organizmima. S obzirom da je dokazan njen neurotoksični, hepatotoksični i potencijalno kancerogeni efekat postavlja se pitanje moguće embriotoksičnosti. Zahvaljujući velikoj homologiji sa ljudskim genomom, dinamika i morfologija razvića se može proučavati na zebricama (lat. Danio rerio), koje predstavljaju dobar model sistem za ispitivanje razvića i razvojnih abnormalnosti. Cilj je ispitivanje uticaja 2,4-DABA-e na proteine ključne u razviću oka zebrica pomoću molekularnog dokinga.
Metode: Inicijalno je urađen skrining celokupnog genoma korišćenjem FINDSITEcomb softvera, preciznom analizom je selektovano 1119 proteina iz baze kojima smo utvrđivali stepen homologije, tkivno specifičnu ekspresiju i vreme ekspresije. Šest proteina koji su ispunili tražene kriterijume, analizirani su u AutoDock Vina programu molekularnim dokingom.
Rezultati: Interakcija fzd8a proteina i 2,4-DABA-e ispoljila je najnižu vrednost Gibsove slobodne energije od - 4,6 kCal/mol, dok je najviša od - 3,4 kCal/mol zabeležena u interakciji sa proteinom pbx4. Takođe, uočena je sličnost aminokiselinske sekvence u proteinima za koje se vezivala 2,4-DABA, koja se ogledala u aminokiselinama koje u svom sastavu imaju –SH grupu.
Zaključak: Sprovedenim istraživanjem pokazano je da 2,4-DABA može ostvarivati svoje efekte na razvoj oka, tokom celog perioda. Rezultate in silico analiza ne treba posmatrati izolovano, već kao početni korak i smernice za istraživanja u in vivo uslovima. Stoga naša studija treba biti dopunjena rezultatima ispitivanja na živim embrionima.
Reference
Krüger T, Mönch B, Oppenhäuser S, Luckas B. LC–MS/MS determination of the isomeric neurotoxins BMAA (β-N-methylamino-l-alanine) and DAB (2, 4-diaminobutyric acid) in cyanobacteria and seeds of Cycas revoluta and Lathyrus latifolius. Toxicon. 2010;55(2-3):547-57.
Collins MD, Jones D. Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2, 4‐diaminobutyric acid. J Appl Bact. 1980;48(3):459-70.
Fan H, Qiu J, Fan L, Li A. Effects of growth conditions on the production of neurotoxin 2, 4-diaminobutyric acid (DAB) in Microcystis aeruginosa and its universal presence in diverse cyanobacteria isolated from freshwater in China. Environ Sci Pollut Res Int. 2015;22(8):5943-51.
Abe M, Matsuda M. On the existence of two GABA pools associated with newly synthesized GABA and with newly taken up GABA in nerve terminals. Neurochem Res. 1983;8(5):563-73.
Tominaga M, Iwashita Y, Ohta M, Shibata K, Ishio T, et al. Antitumor effects of the MIG and IP-10 genes transferred with poly [D, L-2, 4-diaminobutyric acid] on murine neuroblastoma. Cancer Gene Ther. 2007;14(8):696-705.
Nishimura Y, Inoue A, Sasagawa S, Koiwa J, Kawaguchi K, Kawase R, et al. Using zebrafish in systems toxicology for developmental toxicity testing. Congenit Anom (Kyoto). 2016;56(1):18-27.
MacRae CA, Peterson RT. Zebrafish as tools for drug discovery. Nat Rev Drug Discov. 2015;14(10):721-31.
Howe K, Clark MD, Torroja CF, Torrance J, Berthelot C, Muffato M, et al. The zebrafish reference genome sequence and its relationship to the human genome. Nature. 2013;496(7446):498-503.
Kronfeld PC. The gross anatomy and embryology of the eye. In: Vegetative Physiology and Biochemistry. Academic Press,1962; pp. 1-62.
de Oliveira Poswar F, Farias LC, de Carvalho Fraga CA, Bambirra Jr W, Brito-Júnior M, et al. Bioinformatics, interaction network analysis, and neural networks to characterize gene expression of radicular cyst and periapical granuloma. J Endod. 2015; 41(6):877-83.
Arnold R, Boonen K, Sun MG, Kim PM. Computational analysis of interactomes: Current and future perspectives for bioinformatics approaches to model the host–pathogen interaction space. Methods. 2012;57(4):508-18.
Zhou H, Cao H and Skolnick J. FINDSITEcomb2. 0: A new approach for virtual ligand screening of proteins and virtual target screening of biomolecules. J Chem Inf Model. 2018;58(11), 2343-2354.
Ruzicka L et al. ZFIN, The zebrafish model organism database: Updates and new directions. Genesis. 2015;53(8): 498-509.
Lehrer S and Rheinstein PH. Ivermectin docks to the SARS-CoV-2 spike receptor-binding domain attached to ACE2. In vivo. 2020;34(5), 3023-3026.
Yu R, Chen L, Lan R, Shen R and Li P. Computational screening of antagonists against the SARS-CoV-2 (COVID-19) coronavirus by molecular docking. Int J Antimicrob Agents. 2020;56(2): 106012.
O'Neal RM, Chen CH, Reynolds CS, Meghal SK, Koeppe RE. The ‘neurotoxicity’of L-2, 4-diaminobutyric acid. Biochem J. 1968;106(3):699-706.
Takahashi N, Smithies O. Human genetics, animal models and computer simulations for studying hypertension. TRENDS in Genetics. 2004;20(3):136-45.
Morris GM, Lim-Wilby M. Molecular docking. Methods Mol Biol. 2008:443:365-82.
Nikaido M, Law EW, Kelsh RN. A systematic survey of expression and function of zebrafish frizzled genes. PloS one. 2013;8(1): e54833.
Ferraiuolo RM, Meister D, Leckie D, Dashti M, Franke J, et al. Neuro‐and hepatic toxicological profile of (S)‐2, 4‐diaminobutanoic acid in embryonic, adolescent and adult zebrafish. J Appl Toxicol. 2019;39(11):1568-77.
Purdie EL, Samsudin S, Eddy FB, Codd GA. Effects of the cyanobacterial neurotoxin β-N-methylamino-L-alanine on the early-life stage development of zebrafish (Danio rerio). Aquat Toxicol. 2009;95(4):279-84.