Personality Traits and Anxiety Related to Artificial Intelligence among Educators in Serbia: The Mediating Role of Resilience, Work Locus of Control, and Burnout Syndrome
Abstract
In the context of rapid technological advancement, particularly in the field of education, the increasing use of artificial intelligence (AI) raises questions about how individual psychological characteristics influence the experience and regulation of AI-related anxiety among teaching staff. The aim of this study was to examine whether resilience, work locus of control, and burnout syndrome mediate the relationship between personality traits and levels of AI-related anxiety among educators in the Republic of Serbia. The research was conducted on a sample of 324 teachers from primary and secondary schools. The following instruments were used: the Ten-Item Personality Inventory (TIPI–10) to assess personality dimensions, the Brief Resilience Scale (BRS) to measure resilience, Spector’s Work Locus of Control Scale (SWLC), the Copenhagen Burnout Inventory (CBI) to assess burnout syndrome, and the Artificial Intelligence Anxiety Scale (AIA). The results indicate that personality traits have a weak direct effect on AI-related anxiety. Neuroticism contributes to higher levels of AI-related anxiety indirectly, through external work locus of control and burnout syndrome. Conscientiousness and resilience act as protective factors by reducing burnout syndrome and strengthening internal work locus of control, which in turn predict lower AI-related anxiety. These findings highlight the importance of strengthening teachers’ internal psychological capacities in the process of adapting to the demands of a shifting educational system.
References
Alarcon, G., Eschleman, K. J., & Bowling, N. A. (2009). Relationships between personality variables and burnout: A meta-analysis. Work & Stress, 23(3), 244–263. https://doi.org/10.1080/02678370903282600
Angelini, G. (2023). Big Five model personality traits and job burnout: A systematic literature review. BMC Psychology, 11, 49. https://doi.org/10.1186/s40359-023-01056-y
Azarkerdar, F., Pourehsan, S., & Towhidi, A. (2022). The mediating role of resilience in the relationship between personality traits with job satisfaction in teachers. Educational Psychology, 18(65), 183–201. https://doi.org/10.22054/jep.2022.63789.3482
Babiker, A., Alshakhsi, S., Al-Thani, D., Montag, C., & Ali, R. (2024). Attitude towards AI: Potential influence of conspiracy belief, XAI experience and locus of control. International Journal of Human–Computer Interaction, 41(13), 7939–7951. https://doi.org/10.1080/10447318.2024.2401249
Babiker, M., Merisalu, E., Roja, Ž., & Kalkis, H. (2025). Prospective effects of artificial intelligence on burnout syndrome: Reducing risks and enhancing psychological well-being. Sigurnost: časopis za sigurnost u radnoj i životnoj okolini, 67(2), 135–141. https://doi.org/10.31306/s.67.2.4
Baron, R. M., & Kenny, D. A. (1986). The moderator–mediator variable distinction in social psychological research: Conceptual, strategic, and statistical considerations. Journal of Personality & Social Psychology, 51, 1173–1182.
Basha, S. E., Alquqa, E. K., Aldabbas, H., & Elamin, A. M. (2025). The mediating role of resilience in the relationship between attitude towards artificial intelligence and workplace well-being. Journal of Posthumanism, 5(6), 2326–2339. https://doi.org/10.63332/joph.v5i6.2341
Cabero-Almenara, J., Palacios-Rodríguez, A., Loaiza-Aguirre, M. I., & Rivas-Manzano, M. d. R. d. (2024). Acceptance of educational artificial intelligence by teachers and its relationship with some variables and pedagogical beliefs. Education Sciences, 14(7), 740. https://doi.org/10.3390/educsci14070740
Carver, C. S. (1998). Resilience and thriving: Issues, models, and linkages. Journal of Social Issues, 54(2), 245–266.
Celik, I., Dindar, M., Muukkonen, H., & Järvelä, S. (2022). The promises and challenges of artificial intelligence for teachers: A systematic review of research. TechTrends, 66(4), 616–630. https://doi.org/10.1007/s11528-022-00715-y
Chen, L., Chen, P., & Lin, Z. (2020). Artificial intelligence in education: A review. IEEE Access, 8, 75264–75278. https://doi.org/10.1109/ACCESS.2020.2988510
Chen, X., Zou, D., Xie, H., Cheng, G., & Liu, C. (2022). Two decades of artificial intelligence in education. Educational Technology & Society, 25(1), 28–47.
Chiou, M., McCabe, F., Grigoriou, M., & Stolkin, R. (2021). Trust, shared understanding and locus of control in mixed-initiative robotic systems. In: 2021 30th IEEE International Conference on Robot & Human Interactive Communication (ROMAN) (pp. 684–691). Vancouver, BC, Canada: IEEE. https://doi.org/10.1109/RO-MAN50785.2021.9515476
Cvetkovic, A., Savolainen, I., Koike, M., & Oksanen, A. (2025). A four-wave longitudinal study on attitudes toward the use of AI in different domains—The self-determination theory and locus of control perspective. Telematics and Informatics Reports, 18, 100220. https://doi.org/10.1016/j.teler.2025.100220
Čačić, S. i Gavrilov-Jerković, V. (2013). Kognitivno-afektivni regulatorni mehanizmi kao medijatori između dimenzija afektivne vezanosti i depresije. Primenjena psihologija, 6, 358–405.
Davidović Rakić, J., Popović, E., & Minić, J. (2024). Anxiety related to artificial intelligence among educators in the Republic of Serbia. International Conference Education and Artificial Intelligence (EDAI 2024): Book of Abstracts (p. 20). Vranje: Pedagogical Faculty in Vranje, University of Niš.
Devaraj, S., Easley, R. F., & Crant, J. M. (2008). Research note: How does personality matter? Relating the Five-Factor Model to technology acceptance and use. Information Systems Research, 19(1), 93–105. https://doi.org/10.1287/isre.1070.0153
Duan, H., & Zhao, W. (2024). The effects of educational artificial intelligence-powered applications on teachers’ perceived autonomy, professional development for online teaching, and digital burnout. International Review of Research in Open and Distributed Learning, 25(3), 57–76. https://doi.org/10.19173/irrodl.v25i3.7659
Fletcher, D., & Sarkar, M. (2013). Psychological resilience: A review and critique of definitions, concepts, and theory. European Psychologist, 18(1), 12–23. https://doi.org/10.1027/1016-9040/a000124
Gayed, J. M. (2025). Educators’ perspective on artificial intelligence: Equity, preparedness, and development. Cogent Education, 12(1), 2447169. https://doi.org/10.1080/2331186X.2024.2447169
Gessl, A. S., Schlögl, S., & Mevenkamp, N. (2019). On the perceptions and acceptance of artificially intelligent robotics and the psychology of the future elderly. Behaviour & Information Technology, 38(11), 1068–1087. https://doi.org/10.1080/0144929X.2019.1566499
Goldberg, L. M., Sweeney, D., Meranda, P. F., & Hughes, J. E., Jr. (1996). The Big-Five factor structure as an integrative framework: An analysis of Clarke’s AVA model. Journal of Personality Assessment, 66, 441–471.
Gosling, S. D., Rentfrow, P. J., & Swann, W. B., Jr (2003). A very brief measure of the Big-Five personality domains. Journal of Research in Personality, 37(6), 504–528. https://doi.org/10.1016/S0092-6566(03)00046-1
Gu, Q., & Day, C. (2007). Teacher’s resilience: A necessary condition for effectiveness. Teaching and Teacher Education, 23(8), 1302–1316. https://doi.org/10.1016/j.tate.2006.06.006semanticscholar.org+6
Hopcan, S., Türkmen, G., & Polat, E. (2023). Exploring the artificial intelligence anxiety and machine learning attitudes of teacher candidates. Education and Information Technologies, 28(1), 765–782. https://doi.org/10.1007/s10639-023-12086-9
John, O. P., Donahue, E. M., & Kentle, R. L. (1991). The Big-Five Inventory-Version 4a and 54. Berkeley, CA: Berkeley Institute of Personality and Social Research, University of California.
John, O. P., & Srivastava, S. (1999). The Big Five Trait taxonomy: History, measurement, and theoretical perspectives. In: L. A. Pervin & O. P. John (Eds.), Handbook of Personality: Theory and Research, 2nd ed. (pp. 102–138). New York: Guilford Press.
Judge, T. A., & Bono, J. E. (2001a). A rose by any other name: Are self-esteem, generalized self-efficacy, neuroticism, and locus of control indicators of a common construct? In: B. W. Roberts & R. Hogan (Eds.), Personality Psychology in the Workplace (pp. 93–118). Washington, DC: American Psychological Association. https://doi.org/10.1037/10434-004
Judge, T. A., & Bono, J. E. (2001b). Relationship of core self-evaluations traits—self-esteem, generalised self-efficacy, locus of control, and emotional stability—with job satisfaction and job performance: A meta-analysis. Journal of Applied Psychology, 86(1), 80–92. https://doi.org/10.1037/0021-9010.86.1.80
Kasinidou, M., Kleanthous, S., & Otterbacher, J. (2024). “Artificial intelligence is a very broad term”: How educators perceive Artificial Intelligence?. In: GoodIT ‘24: Proceedings of the 2024 International Conference on Information Technology for Social Good (pp. 315–323). New York, NY: Association for Computing Machinery. https://doi.org/10.1145/3677525.3678677
Kim, L. E., Jörg, V., & Klassen, R. M. (2019). A meta-analysis of the effects of teacher personality on teacher effectiveness and burnout. Educational Psychology Review, 31(1), 163–195. https://doi.org/10.1007/s10648-018-9458-2
Kristensen, T. S., Borritz, M., Villadsen, E., & Christensen, K. B. (2005). The Copenhagen Burnout Inventory: A new tool for the assessment of burnout. Work & Stress, 19(3), 192–207. https://doi.org/10.1080/02678370500297720
Larsen, R. J., & Buss, D. M. (2008). Psihologija ličnosti. Jastrebarsko: Naklada Slap.
Li, J., & Huang, J.-S. (2020). Dimensions of artificial intelligence anxiety based on integrated fear acquisition theory. Technology in Society, 63, 101410. https://doi.org/10.1016/j.techsoc.2020.101410
Liu, Z., Li, Y., Zhu, W., He, Y., & Li, D. (2022). A meta-analysis of teachers’ job burnout and Big Five personality traits. Frontiers in Education, 7. https://doi.org/10.3389/feduc.2022.822659
Mansfield, C. F., Beltman, S., Weatherby-Fell, N., & Broadley, T. (2016). Building resilience in teacher education: An evidence-informed framework. Teaching and Teacher Education, 54, 77–87. https://doi.org/10.1016/j.tate.2015.11.016
Maslach, C., & Jackson, S. E. (1981). The measurement of experienced burnout. Journal of Occupational Behavior, 2(2), 99–113. https://doi.org/10.1002/job.4030020205
Maslach, C., & Leiter, M. P. (2016). Burnout: A multidimensional perspective. In: G. Fink (Ed.), Stress: Concepts, Cognition, Emotion, and Behavior (pp. 351–357). Amsterdam: Elsevier. https://doi.org/10.1016/B978-0-12-800951-2.00044-3
Montag, C., Schulz, P. J., Zhang, H., & Li, B. J. (2025). On pessimism aversion in the context of artificial intelligence and locus of control: Insights from an international sample. AI & Soc, 40, 3349–3356. https://doi.org/10.1007/s00146-025-02186-0
Ng, T. W. H., Sorensen, K. L., & Eby, L. T. (2006). Locus of control at work: A meta-analysis. Journal of Organizational Behavior, 27(8), 1057–1087. https://doi.org/10.1002/job.416
Park, J., & Woo, S. E. (2022). Who likes artificial intelligence? Personality predictors of attitudes toward artificial intelligence. The Journal of Psychology, 156(1), 68–94. https://doi.org/10.1080/00223980.2021.2012109
Pham, S. T. H., & Sampson, P. M. (2022). The development of artificial intelligence in education: A review in context. Journal of Computer Assisted Learning, 38(5), 1312–1330. https://doi.org/10.1111/jcal.12687
Pichlbauer, M. (2024). Einfluss der Persönlichkeitsvariable „Locus of Control“ auf das Vertrauen in KI-Systeme (Master’s thesis). University of Applied Sciences Upper Austria, School of Management, Steyr, Austria. https://epub.jku.at/obvulihs/content/titleinfo/10518655
Polak, S., Schiavo, G., & Zancanaro, M. (2022). Teachers’ perspective on artificial intelligence education: An initial investigation. In: CHI Conference on Human Factors in Computing Systems Extended Abstracts (CHI ’22 Extended Abstracts, April 29–May 5, 2022, New Orleans, LA, USA) (pp. 1–7). New York, NY: Association for Computing Machinery (ACM). https://doi.org/10.1145/3491101.3519866
Polat, E. (2025). Artificial intelligence literacy, lifelong learning, and fear of innovation: Identification of profiles and relationships. Education and Information Technologies, 30, 20183–20214. https://doi.org/10.1007/s10639-025-13548-y
Polat, D. D., & İskender, M. (2018). Exploring teachers’ resilience in relation to job satisfaction, burnout, organizational commitment and perception of organizational climate. International Journal of Psychology and Educational Studies, 5(3), 1–13. https://doi.org/10.17220/ijpes.2018.03.001
Preacher, K. J., & Hayes, A. F. (2008). Asymptotic and resampling strategies for assessing and comparing indirect effects in multiple mediator models. Behavior Research Methods, 40, 879–891. https://doi.org/10.3758/BRM.40.3.879
Rajović, R., Davidović Rakić, J. i Erdeš Kavečan, Đ. (2021). Sagorevanje i zadovoljstvo životom prosvetnih radnika u Sloveniji u uslovima krize izazvane pandemijom Kovid 19. U: Z. Arsić (ur.), Psihologija katastrofa, vanredno stanje i njihov efekat na zdravlje (str. 331–357). Kosovska Mitrovica: Filozofski fakultet Univerziteta u Prištini sa privremenim sedištem u Kosovskoj Mitrovici.
Rehman, A. U., Mahmood, A., Bashir, S., & Iqbal, M. (2024). Technophobia as a technology inhibitor for digital learning in education: A systematic literature review. Journal of Educators Online, 21(1), 1–20. https://doi.org/10.9743/JEO.2024.21.1.1
Richards, K. A. R., Levesque-Bristol, C., Templin, T. J., & Graber, K. C. (2016). The impact of resilience on role stressors and burnout in elementary and secondary teachers. Social Psychology of Education, 19(3), 511–536. https://doi.org/10.1007/s11218-016-9346-x
Rotter, J. B. (1966). Generalized expectancies for internal versus external control of reinforcement. Psychological Monographs: General and Applied, 80(1), 1–28. https://doi.org/10.1037/h0092976
Schepman, A., & Rodway, P. (2023). The General Attitudes Towards Artificial Intelligence Scale (GAAIS): Confirmatory validation and associations with personality, corporate distrust, and general trust. International Journal of Human-Computer Interaction, 39(13), 2724–2741. https://doi.org/10.1080/10447318.2022.2085400
Schwab, R. L., Jackson, S. E., & Schuler, R. S. (1986). Educator burnout: Sources and consequences. Educational Research Quarterly, 10(3), 14–30.
Sharan, N. N., & Romano, D. M. (2020). The effects of personality and locus of control on trust in humans versus artificial intelligence. Heliyon, 6(8), e04572. https://doi.org/10.1016/j.heliyon.2020.e04572
Silagan, B. L., & Tumapon, T. (2025). Technological competence, training and support, attitude towards AI, and teachers’ acceptance. SSRN. https://doi.org/10.2139/ssrn.5250301
Skaalvik, E. M., & Skaalvik, S. (2010). Teacher self-efficacy and teacher burnout: A study of relations. Teaching and Teacher Education, 26(4), 1059–1069. https://doi.org/10.1016/j.tate.2009.11.001
Skaalvik, E. M., & Skaalvik, S. (2020). Teacher burnout: Relations between dimensions of burnout, perceived school context, job satisfaction and motivation for teaching. A longitudinal study. Teachers and Teaching, 26(7–8), 602–616. https://doi.org/10.1080/13540602.2021.1913404
Slišković, A. i Burić, I. (2018). Kratka skala otpornosti. U: A. Slišković, I. Burić, V. Ćubela Adorić, M. Nikolić i I. Tucak Junaković, (ur.), Zbirka psihologijskih skala i upitnika, Svezak 9 (str. 7–12). Zadar: Sveučilište u Zadru.
Slišković, A., Gregov, Lj. i Tokić, A. (2014). Spektorova skala radnog lokusa kontrole. U: V. Ćubela Adorić, Z. Penezić, A. Proroković i I. Tucak Junaković (ur.), Zbirka psihologijskih skala i upitnika, Svezak 7 (str. 57–64). Zadar: Sveučilište u Zadru.
Smederevac, S. i Mitrović, D. (2018). Ličnosti – metodi i modeli. Beograd: Centar za primenjenu psihologiju.
Smith, B. W., Dalen, J., Wiggins, K., Tooley, E., Christopher, P., & Bernard, J. (2008). The brief resilience scale: Assessing the ability to bounce back. International Journal of Behavioral Medicine, 15(3), 194–200. https://doi.org/10.1080/10705500802222972
Spector, P. E. (1988). Development of the Work Locus of Control Scale. Journal of Occupational Psychology, 61(4), 335–340. https://doi.org/10.1111/j.2044-8325.1988.tb00470.x
Stănescu, D. F., & Romașcanu, M. C. (2024). The influence of AI anxiety and neuroticism on attitudes toward artificial intelligence. European Journal of Sustainable Development, 13(4), 191–202. https://doi.org/10.14207/ejsd.2024.v13n4p191
Swider, B. W., & Zimmerman, R. D. (2010). Born to burnout: A meta-analytic path model of personality, job burnout, and work outcomes. Journal of Vocational Behavior, 76(3), 487–506. https://doi.org/10.1016/j.jvb.2010.01.003
Tabachnick, B. G., & Fidell, L. S. (2021). Using Multivariate Statistics, 7th ed. Boston: Pearson.
Tugade, M., & Fredrickson, B. (2004). Resilient individuals use positive emotions to bounce back from negative emotional experiences. Journal of Personality and Social Psychology, 86, 320–333. https://doi.org/10.1037/0022-3514.86.2.320
Tusaie, K., & Dyer, J. (2004). Resilience: A historical review of the construct. Holistic Nursing Practice, 18(1), 3–10.
Wang, Y. Y., & Wang, Y. S. (2019). Development and validation of an artificial intelligence anxiety scale: An initial application in predicting motivated learning behavior. Interactive Learning Environments, 30(4), 619–634. https://doi.org/10.1080/10494820.2019.1674887
Weitzel, E. C., Löbner, M., Glaesmer, H., Hinz, A., Zeynalova, S., Henger, S., Engel, C., Reyes, N., Wirkner, K., Löffler, M., & Riedel-Heller, S. G. (2022). The association of resilience with mental health in a large population-based sample (LIFE-AdultStudy). International Journal of Environmental Research and Public Health, 19(23), 15944. https://doi.org/10.3390/ijerph192315944
Windle, G. (2010). What is resilience? A systematic review and concept analysis. Reviews in Clinical Gerontology, 21(2), 152–169. https://doi.org/10.1017/S0959259810000420
Yin, W., Ren, G., & Zhang, G. (2025). Mediating and moderating roles of AI literacy: How it shapes the impacts of psychological resilience on work stress and job burnout among young university teachers in China. Computers and Education: Artificial Intelligence, 6, 100451. https://doi.org/10.1016/j.caeai.2025.100451
Zhang, C., Schießl, J., Plößl, L., Hofmann, F., & Gläser-Zikuda, M. (2023). Acceptance of artificial intelligence among pre-service teachers: A multigroup analysis. International Journal of Educational Technology in Higher Education, 20(1), 49. https://doi.org/10.1186/s41239-023-00420-7
Zhang, Y., & Xiong, P. (2025). Will the application of AI technology in higher education exacerbate teacher burnout? International Journal of High Speed Electronics and Systems. Advance online publication. https://doi.org/10.1142/S0129156425408381
The details about the publication policy, including copyright and licensing, are available at:
