Rheological behavior study and its significance in the assessment of application properties and physical stability of phytosome loaded hydrogels

  • Ljiljana Djekić University of Belgrade-Faculty of Pharmacy, Department of Pharmaceutical Technology and Cosmetology
  • Danina Krajišnik University of Belgrade-Faculty of Pharmacy, Department of Pharmaceutical Technology and Cosmetology
Keywords: Phytosomes, hydrogel, rheological characterization, application properties, physical stability

Abstract


Phytosomes are amphiphilic molecular complexes of substances of plant origin and phospholipids that are considered as active ingredients of dermopharmaceutical and cosmetic formulations of potentially improved efficiency. The study aim was the formulation of carbomer hydrogels with commercially available phytosomes of escin (Escin ß-Sitosterol Phytosome®) (EP) and 18-ß glycyrrhetinic acid (18-ß Glycyrrhetinic Acid Phytosome®) (GP) and evaluation of their application properties and real-time physical stability. Phytosomes incorporation did not significantly affect pH of the hydrogels, which was acceptable for cutaneous application. However, these hydrogels had significantly different organoleptic properties (opaque and softer consistency) compared to the hydrogel without active substance (C) and the hydrogels with pure active substances (E and G) used for comparison. The values ​​of maximum and minimum apparent viscosity and yield stress were significantly lower in phytosome-loaded hydrogels. The results of oscillatory rheological analysis indicated that viscous character prevails in EP and GP hydrogels (elastic modulus (G ')˂viscous modulus (G ")), while in hydrogels C, E and G elastic properties were more pronounced (G'˃G "). Escin phytosome had greater influence on carbomer gel network strength. Phytosome-loaded hydrogels were physically stable during 24 months of storage under ambient conditions, although the rheological analysis also indicated a potential risk of sedimentation.

References

Saraf AS. Applications of novel drug delivery system for herbal formulations. Fitoterapia 2010;81(7):680-9.

Djekic L, Krajisnik D, Micic Z. Polyphenolics–phospholipid complexes as natural cosmetic ingredients: Properties and application. Tenside Surfact. Det. 2015;52(3):186-92.

Karimi N, Ghanbarzadeh B, Hamishehkar H, Keivani F, Pezeshki A, Gholian MM. Phytosome and Liposome: The Beneficial Encapsulation Systems in Drug Delivery and Food Application. Appl. Food Biotechnol. 2015;2(3):17-27.

Semalty A, Semalty M, Rawat MSM, Franceschi F. Supramolecular phospholipids–polyphenolics interactions: The PHYTOSOME® strategy to improve the bioavailability of phytochemicals. Fitoterapia 2010;81(5):306-14.

Alam MA, Al-Jenoobi FI, Al-mohizea AM. Commercially bioavailable proprietary technologies and their marketed products. Drug Discov. Today 2013;18(19/20):936-49.

Indena® Product List. DPR0002 - 03/2011*02/2020 [Internet]. Indena S.p.A. 2020 [cited 2021 Jan 30]. Available from: https://www.indena.com/indena_files/2020/02/Indena-product_list_2020.pdf.

Ahmed EM. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 2015;6(2):105-21.

Gyles DA, Castro LD, Júnior JOC, Ribeiro-Costa RM. The designs and prominent biomedical advances of natural and synthetic hydrogel formulations. Eur. Polym. J. 2017;88:373-92.

Peppas NA, Bures P, Leobandung W, Ichikawa H. Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm. 2000;50(1):27-46.

Tasić Kostov M, Arsić I, Pavlović D, Stojanović S, Najman S, Ilić D, Tadić V. Alchemilla vulgaris L. extract in hydrogel vehicle: in vivo/in vitro evaluation of skin safety profile and wound healing potential in threatment of minor cutaneous wounds. [Hidrogel sa ektraktom Alchemilla vulgaris L.: in vivo/in vitro procena bezbednosti i uticaja na zarastanje manjih rana na koži]. Arh. farm. 2018;68(3):645-6.

Jončić-Savić K, Pešić J, Rajić M, Lukić M, Jakšić I, Milić J, Savić S, Vuleta G. The influence of different formulation factors on physicochemical and biopharmaceutical characteristics of ketoprofen 2,5% gel. [Uticaj faktora formulacije na fizičkohemijske i biofarmaceutske karakteristike ketoprofen 2,5% gela]. Arh. farm. 2010;60:1237-55.

Paulsson M, Edsman K. Controlled drug release from gels using surfactant aggregates: I. Effect of Lipophilic Interactions for a Series of Uncharged Substances. J. Pharm. Sci. 2001;90(9):1216-25.

Xu H, Wen Y, Chen S, Zhu L, Feng R, Song Z. Paclitaxel skin delivery by micelles-embedded Carbopol 940 hydrogel for local therapy of melanoma. Int. J. Pharm. 2020;587:119626. doi.org/10.1016/j.ijpharm.2020.119626.

Djekic L, Martinović M, Dobričić V, Čalija B, Medarević Đ, Primorac M. Comparison of the effect of bioadhesive polymers on stability and drug release kinetics of biocompatible hydrogels for topical application of ibuprofen. J. Pharm. Sci. 2019;108(3):1326-33.

Graziano R, Preziosi V, Uva D, Tomaiuolo G, Mohebbi B, Claussen J, Guido S. The microstructure of Carbopol in water under static and flow conditions and its effect on the yield stress. J. Colloid. Interface. Sci. 2021;582(Pt B):1067-74.

Dinkgreve M, Fazilati M, Denn M, Bonn D. Carbopol: from a simple to a thixotropic yield stress fluid. J. Rheol. 2018;62(3):773-80.

Agarwal M, Joshi YM. Signatures of physical aging and thixotropy in aqueous dispersion of Carbopol. Phys. Fluids 2019;31(6):063107. doi.org/10.1063/1.5097779.

Barreiro-Iglesias R, Alvarez-Lorenzo C, Concheiro A. Incorporation of small quantities of surfactants as a way to improve the rheological and diffusional behavior of carbopol gels. J. Control. Release 2001;77(1-2):59-75.

Barreiro-Iglesias R, Alvarez-Lorenzo C, Concheiro A. Poly(acrylic acid) microgels (carbopol® 934)/ surfactant interactions in aqueous media Part I: Nonionic surfactants. Int. J. Pharm. 2003;258(1-2):165-77.

Barreiro-Iglesias R, Alvarez-Lorenzo C, Concheiro A. Controlled release of estradiol solubilized in carbopol/surfactant aggregates. J. Control. Release 2003;93(3):319-30.

Technical Datasheet 5277. Escin b- Sitosterol Phytosome Indena [Internet]. Farmalabor Srl, Canosa di Puglia (Italy) [cited 2021 Jan 30]. Available from:

https://www.farmalabor.it/schede/2017/6881301.PDF.

Bombardelli E, Patri GF, Pozzi R. Complexes of saponins with phospholipids and pharmaceutical and cosmetic compositions containing them [Internet]. Munich, Germany: European Patent Office. European Patent: EP 0 283 713 B1, 1993 [cited 2021 Jan 30]. Available from: https://patents.google.com/patent/EP0283713A2/en.

Curri SB, Bombardelli E, Della Loggia R, Del Negro P, Tubaro A. Topical antiinflammatory activity of complexes of aescin and sterols with phospholipids, Part II: Anti-oedema properties in the treatment of panniculopathies of the thigts and breast. Fitoterapia 1989;60:45-53.

Djekic L, Čalija B, Micov A, Tomić M, Stepanović-Petrović R. Topical hydrogels with escin β‐sitosterol phytosome and escin: Formulation development and in vivo assessment of antihyperalgesic activity. Drug Dev. Res. 2019;80(7):921-32.

Technical Datasheet 5256. 18 Beta Glycyrrhetic Acid Phytosome Indena [Internet]. Farmalabor Srl, Canosa di Puglia (Italy). [cited 2021 Jan 30]. Available from:

https://materie-prime.farmalabor.it/schede/6394529.PDF.

Kowalska A, Kalinowska-Lis U. 18β-Glycyrrhetinic acid: its core biological properties and dermatological applications. Int. J. Cosmet. Sci. 2019;41(4):325-31.

Djekic L, Krajišnik D, Mićić Z, Čalija B. Formulation and physicochemical characterization of hydrogels with 18β-glycyrrhetinic acid/phospholipid complex phytosomes. J. Drug Deliv. Sci. Technol. 2016;35:81-90.

Mezger TG. Applied Rheology: with Joe Flow on Rheology Road. Graz: Anton Paar; 2015; p. 47-51.

Escin β-Sitosterol Phytosome® Datasheet. Escin and Escin β-Sitosterol Phytosome® Indena S.p.A., 2017 [Internet]. Indena S.p.A (Italy) [cited 2021 Jan 30]. Available from:

https://www.ulprospector.com/en/eu/PersonalCare/Detail/2736/81738/Escin--Sitosterol-Phtosome.

18-β Glycyrrhetinic Acid Phytosome® Datasheet. 18-β Glycyrrhetinic Acid and 18-β Glycyrrhetinic Acid Phytosome® Indena S.p.A., 2016 [Internet]. Indena S.p.A (Italy) [cited 2021 Jan 30]. Available from: https://www.ulprospector.com/en/eu/PersonalCare/Detail/2736/226137/18--Glycyrrhetinic-Acid-Phytosome

Lambers H,Piessens S, Bloem A, Pronk H, Finkel P. Natural skin surface pH is on average below 5, which is beneficial for its resident flora. Int. J. Cosmet. Sci. 2006;28(5):359-70.

TDS-255 Formulating Hydroalcoholic Gels with Carbopol® Polymers [Internet]. The Lubrizol, Technical Data Sheet, Edition: September 3, 2009. [cited 2021 Jan 30]. Available from: https://www.lubrizol.com/Personal-Care/Literature.

Marriott C. Rheology. In Aulton ME, Taylor KM, editor(s). Aulton's Pharmaceutics E-Book: The Design and Manufacture of Medicines. Elsevier Health Sciences: 2018; p. 93-114.

Sakamoto K, Lochhead R, Maibach H, Yamashita Y, editor(s). Cosmetic science and technology: theoretical principles and applications. Amsterdam: Elsevier: 2017; p. 643.

Fahr A. Voigt's Pharmaceutical Technology. Hoboken, Chichester: John Wiley & Sons; 2018; p. 122-23.

Dinkgreve M, Paredes J, Denn MM, Bonn D. On different ways of measuring “the” yield stress. J. non-Newton. Fluid. 2016;238:233-41.

Islam MT, Rodriguez-Hornedo N, Ciotti S, Ackermann C. Rheological characterization of topical carbomer gels neutralized to different pH. Pharm. Res. 2004;21(7):1192-9.

Ofner CM, Klech-Gelotte CM. Gels and Jellies. In Swarbrick J, editor. Encyclopedia of pharmaceutical technology. 3rd ed. New York: Marcel Dekker; 2007; p.1880-1.

Tamburic S, Craig DQ. The effects of ageing on the rheological, dielectric and mucoadhesive properties of poly (acrylic acid) gel systems. Pharm. Res. 1996;13:279-83.

Joshi YM, Petekidis G. Yield stress fluids and ageing. Rheol. Acta, 2018;57:521-49.

Lidon P, Villa L, Manneville S. Power-law creep and residual stresses in a carbopol gel. Rheol. Acta, 2017;56:307-23.

Geisler R, Dargel C, Hellweg T. The Biosurfactant β-Aescin: A Review on the Physico-Chemical Properties and Its Interaction with Lipid Model Membranes and Langmuir Monolayers. Molecules 2020;25:117. doi:10.3390/molecules25010117.

Darvishi B, Manoochehri S, Kamalinia G, Samadi N, Amini M, Mostafavi SH, Maghazei S, Atyabi F, Dinarvand R. Preparation and antibacterial activity evaluation of 18-β-glycyrrhetinic acid loaded PLGA nanoparticles. Iran. J. Pharm. Res. 2015;14(2):373-83.

Dragicevic-Curic N, Winter S, Krajisnik D, Stupar M, Milic J, Graefe S, Fahr A. Stability evaluation of temoporfin-loaded liposomal gels for topical application. J. Liposome Res. 2010;20(1):38-48.

TDS-225 Carbopol® Ultrez 10 Polymer for Personal Care Applications [Internet]. Lubrizol, Technical Data Sheet, Edition: January, 2002 [cited 2021 Jan 30]. Available from: https://www.lubrizol.com/Personal-Care/Literature.

Published
2021/04/26
Section
Original scientific paper