Ispitivanje reološkog ponašanja i njegov značaj za procenu aplikativnih svojstava i fizičke stabilnosti hidrogelova sa fitosomima

  • Ljiljana Đekić Univerzitet u Beogradu-Farmaceutski fakultet, Katedra za farmaceutsku tehnologiju i kozmetologiju
  • Danina Krajišnik Univerzitet u Beogradu-Farmaceutski fakultet, Katedra za farmaceutsku tehnologiju i kozmetologiju
Ključne reči: Fitosomi, hydrogel, reološka karakterizacija, aplikativna svojstva, fizička stabilnost

Sažetak


Fitosomi su amfifilni molekulski kompleksi supstanci biljnog porekla i fosfolipida koji se razmatraju kao aktivni sastojci dermofarmaceutskih i kozmetičkih formulacija potencijalno unapređene efikasnosti. Cilj studije bio je formulacija karbomernih hidrogelova sa komercijalno dostupnim fitosomima escina (Escin ß-Sitosterol Phytosome®) (EP) i 18-ß gliciretinske kiseline (18-ß Glycyrrhetinic Acid Phytosome®) (GP) i njihova karakterizacija u cilju procene aplikativnih svojstava i fizičke stabilnosti u realnom vremenu. Inkorporiranje fitosoma nije značajno uticalo na pH hidrogelova, koji je bio prihvatljiv za primenu na koži. Međutim, ovi hidrogelovi imali su značajno različite organoleptičke osobine (neprozirni i mekše konzistencije) u poređenju sa hidrogelom bez aktivne supstance (C) i odgovarajućim hidrogelovima sa čistim aktivnim supstancama (E i G) koji su upotrebljeni za poređenje. Vrednosti maksimalnog i minimalnog prividnog viskoziteta i napon popuštanja bili su značajno niži kod hidrogelova sa fitosomima. Rezultati oscilatorne reološke analize ukazali su da kod hidrogelova EP i GP preovlađuje viskozni karakter (elastični modul (G')˂viskozni modul (G")), dok su kod hidrogelova C, E i G bila izraženija elastična svojstva (G'˃G"). Fitosom escina je imao veći uticaj na jačinu karbomerne gelske mreže. Hidrogelovi sa fitosomima bili su fizički stabilni tokom 24 meseca čuvanja pod ambijentalnim uslovima, mada su rezultati reološke analize ukazali na potencijalni rizik od sedimentacije.

Reference

Saraf AS. Applications of novel drug delivery system for herbal formulations. Fitoterapia 2010;81(7):680-9.

Djekic L, Krajisnik D, Micic Z. Polyphenolics–phospholipid complexes as natural cosmetic ingredients: Properties and application. Tenside Surfact. Det. 2015;52(3):186-92.

Karimi N, Ghanbarzadeh B, Hamishehkar H, Keivani F, Pezeshki A, Gholian MM. Phytosome and Liposome: The Beneficial Encapsulation Systems in Drug Delivery and Food Application. Appl. Food Biotechnol. 2015;2(3):17-27.

Semalty A, Semalty M, Rawat MSM, Franceschi F. Supramolecular phospholipids–polyphenolics interactions: The PHYTOSOME® strategy to improve the bioavailability of phytochemicals. Fitoterapia 2010;81(5):306-14.

Alam MA, Al-Jenoobi FI, Al-mohizea AM. Commercially bioavailable proprietary technologies and their marketed products. Drug Discov. Today 2013;18(19/20):936-49.

Indena® Product List. DPR0002 - 03/2011*02/2020 [Internet]. Indena S.p.A. 2020 [cited 2021 Jan 30]. Available from: https://www.indena.com/indena_files/2020/02/Indena-product_list_2020.pdf.

Ahmed EM. Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res. 2015;6(2):105-21.

Gyles DA, Castro LD, Júnior JOC, Ribeiro-Costa RM. The designs and prominent biomedical advances of natural and synthetic hydrogel formulations. Eur. Polym. J. 2017;88:373-92.

Peppas NA, Bures P, Leobandung W, Ichikawa H. Hydrogels in pharmaceutical formulations. Eur. J. Pharm. Biopharm. 2000;50(1):27-46.

Tasić Kostov M, Arsić I, Pavlović D, Stojanović S, Najman S, Ilić D, Tadić V. Alchemilla vulgaris L. extract in hydrogel vehicle: in vivo/in vitro evaluation of skin safety profile and wound healing potential in threatment of minor cutaneous wounds. [Hidrogel sa ektraktom Alchemilla vulgaris L.: in vivo/in vitro procena bezbednosti i uticaja na zarastanje manjih rana na koži]. Arh. farm. 2018;68(3):645-6.

Jončić-Savić K, Pešić J, Rajić M, Lukić M, Jakšić I, Milić J, Savić S, Vuleta G. The influence of different formulation factors on physicochemical and biopharmaceutical characteristics of ketoprofen 2,5% gel. [Uticaj faktora formulacije na fizičkohemijske i biofarmaceutske karakteristike ketoprofen 2,5% gela]. Arh. farm. 2010;60:1237-55.

Paulsson M, Edsman K. Controlled drug release from gels using surfactant aggregates: I. Effect of Lipophilic Interactions for a Series of Uncharged Substances. J. Pharm. Sci. 2001;90(9):1216-25.

Xu H, Wen Y, Chen S, Zhu L, Feng R, Song Z. Paclitaxel skin delivery by micelles-embedded Carbopol 940 hydrogel for local therapy of melanoma. Int. J. Pharm. 2020;587:119626. doi.org/10.1016/j.ijpharm.2020.119626.

Djekic L, Martinović M, Dobričić V, Čalija B, Medarević Đ, Primorac M. Comparison of the effect of bioadhesive polymers on stability and drug release kinetics of biocompatible hydrogels for topical application of ibuprofen. J. Pharm. Sci. 2019;108(3):1326-33.

Graziano R, Preziosi V, Uva D, Tomaiuolo G, Mohebbi B, Claussen J, Guido S. The microstructure of Carbopol in water under static and flow conditions and its effect on the yield stress. J. Colloid. Interface. Sci. 2021;582(Pt B):1067-74.

Dinkgreve M, Fazilati M, Denn M, Bonn D. Carbopol: from a simple to a thixotropic yield stress fluid. J. Rheol. 2018;62(3):773-80.

Agarwal M, Joshi YM. Signatures of physical aging and thixotropy in aqueous dispersion of Carbopol. Phys. Fluids 2019;31(6):063107. doi.org/10.1063/1.5097779.

Barreiro-Iglesias R, Alvarez-Lorenzo C, Concheiro A. Incorporation of small quantities of surfactants as a way to improve the rheological and diffusional behavior of carbopol gels. J. Control. Release 2001;77(1-2):59-75.

Barreiro-Iglesias R, Alvarez-Lorenzo C, Concheiro A. Poly(acrylic acid) microgels (carbopol® 934)/ surfactant interactions in aqueous media Part I: Nonionic surfactants. Int. J. Pharm. 2003;258(1-2):165-77.

Barreiro-Iglesias R, Alvarez-Lorenzo C, Concheiro A. Controlled release of estradiol solubilized in carbopol/surfactant aggregates. J. Control. Release 2003;93(3):319-30.

Technical Datasheet 5277. Escin b- Sitosterol Phytosome Indena [Internet]. Farmalabor Srl, Canosa di Puglia (Italy) [cited 2021 Jan 30]. Available from:

https://www.farmalabor.it/schede/2017/6881301.PDF.

Bombardelli E, Patri GF, Pozzi R. Complexes of saponins with phospholipids and pharmaceutical and cosmetic compositions containing them [Internet]. Munich, Germany: European Patent Office. European Patent: EP 0 283 713 B1, 1993 [cited 2021 Jan 30]. Available from: https://patents.google.com/patent/EP0283713A2/en.

Curri SB, Bombardelli E, Della Loggia R, Del Negro P, Tubaro A. Topical antiinflammatory activity of complexes of aescin and sterols with phospholipids, Part II: Anti-oedema properties in the treatment of panniculopathies of the thigts and breast. Fitoterapia 1989;60:45-53.

Djekic L, Čalija B, Micov A, Tomić M, Stepanović-Petrović R. Topical hydrogels with escin β‐sitosterol phytosome and escin: Formulation development and in vivo assessment of antihyperalgesic activity. Drug Dev. Res. 2019;80(7):921-32.

Technical Datasheet 5256. 18 Beta Glycyrrhetic Acid Phytosome Indena [Internet]. Farmalabor Srl, Canosa di Puglia (Italy). [cited 2021 Jan 30]. Available from:

https://materie-prime.farmalabor.it/schede/6394529.PDF.

Kowalska A, Kalinowska-Lis U. 18β-Glycyrrhetinic acid: its core biological properties and dermatological applications. Int. J. Cosmet. Sci. 2019;41(4):325-31.

Djekic L, Krajišnik D, Mićić Z, Čalija B. Formulation and physicochemical characterization of hydrogels with 18β-glycyrrhetinic acid/phospholipid complex phytosomes. J. Drug Deliv. Sci. Technol. 2016;35:81-90.

Mezger TG. Applied Rheology: with Joe Flow on Rheology Road. Graz: Anton Paar; 2015; p. 47-51.

Escin β-Sitosterol Phytosome® Datasheet. Escin and Escin β-Sitosterol Phytosome® Indena S.p.A., 2017 [Internet]. Indena S.p.A (Italy) [cited 2021 Jan 30]. Available from:

https://www.ulprospector.com/en/eu/PersonalCare/Detail/2736/81738/Escin--Sitosterol-Phtosome.

18-β Glycyrrhetinic Acid Phytosome® Datasheet. 18-β Glycyrrhetinic Acid and 18-β Glycyrrhetinic Acid Phytosome® Indena S.p.A., 2016 [Internet]. Indena S.p.A (Italy) [cited 2021 Jan 30]. Available from: https://www.ulprospector.com/en/eu/PersonalCare/Detail/2736/226137/18--Glycyrrhetinic-Acid-Phytosome

Lambers H,Piessens S, Bloem A, Pronk H, Finkel P. Natural skin surface pH is on average below 5, which is beneficial for its resident flora. Int. J. Cosmet. Sci. 2006;28(5):359-70.

TDS-255 Formulating Hydroalcoholic Gels with Carbopol® Polymers [Internet]. The Lubrizol, Technical Data Sheet, Edition: September 3, 2009. [cited 2021 Jan 30]. Available from: https://www.lubrizol.com/Personal-Care/Literature.

Marriott C. Rheology. In Aulton ME, Taylor KM, editor(s). Aulton's Pharmaceutics E-Book: The Design and Manufacture of Medicines. Elsevier Health Sciences: 2018; p. 93-114.

Sakamoto K, Lochhead R, Maibach H, Yamashita Y, editor(s). Cosmetic science and technology: theoretical principles and applications. Amsterdam: Elsevier: 2017; p. 643.

Fahr A. Voigt's Pharmaceutical Technology. Hoboken, Chichester: John Wiley & Sons; 2018; p. 122-23.

Dinkgreve M, Paredes J, Denn MM, Bonn D. On different ways of measuring “the” yield stress. J. non-Newton. Fluid. 2016;238:233-41.

Islam MT, Rodriguez-Hornedo N, Ciotti S, Ackermann C. Rheological characterization of topical carbomer gels neutralized to different pH. Pharm. Res. 2004;21(7):1192-9.

Ofner CM, Klech-Gelotte CM. Gels and Jellies. In Swarbrick J, editor. Encyclopedia of pharmaceutical technology. 3rd ed. New York: Marcel Dekker; 2007; p.1880-1.

Tamburic S, Craig DQ. The effects of ageing on the rheological, dielectric and mucoadhesive properties of poly (acrylic acid) gel systems. Pharm. Res. 1996;13:279-83.

Joshi YM, Petekidis G. Yield stress fluids and ageing. Rheol. Acta, 2018;57:521-49.

Lidon P, Villa L, Manneville S. Power-law creep and residual stresses in a carbopol gel. Rheol. Acta, 2017;56:307-23.

Geisler R, Dargel C, Hellweg T. The Biosurfactant β-Aescin: A Review on the Physico-Chemical Properties and Its Interaction with Lipid Model Membranes and Langmuir Monolayers. Molecules 2020;25:117. doi:10.3390/molecules25010117.

Darvishi B, Manoochehri S, Kamalinia G, Samadi N, Amini M, Mostafavi SH, Maghazei S, Atyabi F, Dinarvand R. Preparation and antibacterial activity evaluation of 18-β-glycyrrhetinic acid loaded PLGA nanoparticles. Iran. J. Pharm. Res. 2015;14(2):373-83.

Dragicevic-Curic N, Winter S, Krajisnik D, Stupar M, Milic J, Graefe S, Fahr A. Stability evaluation of temoporfin-loaded liposomal gels for topical application. J. Liposome Res. 2010;20(1):38-48.

TDS-225 Carbopol® Ultrez 10 Polymer for Personal Care Applications [Internet]. Lubrizol, Technical Data Sheet, Edition: January, 2002 [cited 2021 Jan 30]. Available from: https://www.lubrizol.com/Personal-Care/Literature.

Objavljeno
2021/04/26
Rubrika
Originalni naučni rad