An overview on the application of supercritical carbon dioxide for the processing of pharmaceuticals

  • Stoja Milovanović University of Belgrade – Faculty of Technology and Metallurgy
  • Ivana Lukić University of Belgrade – Faculty of Technology and Metallurgy
Keywords: supercritical CO2, solid dispersion, supercritical impregnation, particle generation


Supercritical carbon dioxide (scCO2) application in the pharmaceutical industry is still undeveloped regardless of significant research interests in this processing medium shown in the last decades. ScCO2 technologies can improve drug solubility, bioavailability, and therapeutic effect. These technologies can lead to the development of new formulations that will contribute to a decrease in drug dose, medication frequency, and increase patients’ well-being. Considering the significant decrease in the price of high-pressure equipment and society's growing need for cleaner production and safer products, it is expected that symbiosis between supercritical fluid and pharmaceutical technologies will happen soon. Therefore, this review was focused on the latest contributions of scCO2 technologies to the pharmaceutical field. The main aim was to bring these technologies closer to pharmaceutical specialists. For this purpose, the most commonly used technologies were explained and discussed: the preparation of solid dispersions, polymer impregnation with drugs, and drug micro/nanoparticle production using scCO2.


1.          Padrela L, Rodrigues MA, Duarte A, Dias AMA, Braga MEM, de Sousa HC. Supercritical carbon dioxide-based technologies for the production of drug nanoparticles/nanocrystals – A comprehensive review. Adv Drug Deliv Rev. 2018;131:22–78.

2.          Subramaniam B, Rajewski RA, Snavely K. Pharmaceutical processing with supercritical carbon dioxide. J Pharm Sci. 1997;86:885–90.

3.          Brunner G. Stofftrennung mit überkritischen Gasen (Gasextraktion). Chem Ing Tech. 1987;59:12–22.

4.          Reverchon E, De Marco I. Supercritical fluid extraction and fractionation of natural matter. J Supercrit Fluid. 2006;38:146–66.

5.          Champeau M, Thomassin J-M, Tassaing T, Jérôme C. Drug loading of sutures by supercritical CO2 impregnation: effect of polymer/drug interactions and thermal transitions. Macromol Mater Eng. 2015;596–610.

6.          Milovanovic S, Lukic I, Stamenic M, Kamiński P, Florkowski G, Tyskiewicz K, et al. The effect of equipment design and process scale-up on supercritical CO2 extraction: Case study for Silybum marianum seeds. J Supercrit Fluid. 2022;188:105676.

7.          Knez, Markočič E, Leitgeb M, Primožič M, Knez Hrnčič M, Škerget M. Industrial applications of supercritical fluids: A review. Energy. 2014;77:235–43.

8.          Lukic I, Pajnik J, Tadic V, Milovanovic S. Supercritical CO2-assisted processes for development of added-value materials: Optimization of starch aerogels preparation and hemp seed extracts impregnation. J CO2 Utiliz. 2022;61.

9.          Milovanovic S, Markovic D, Pantic M, Pavlovic SM, Knapczyk-Korczak J, Stachewicz U, et al. Development of advanced floating poly(lactic acid)-based materials for colored wastewater treatment. J Supercrit Fluid. 2021;177:105328.

10.       Pajnik J, Dikić J, Milovanovic S, Milosevic M, Jevtic S, Lukić I. Zeolite/Chitosan/Gelatin Films: Preparation, Supercritical CO2 Processing, Characterization, and Bioactivity. Macromol Mater Eng. 2022;1–37.

11.       Pajnik J, Milovanovic S, Stojanovic D, Dimitrijevic-Brankovic S, Jankovic-Častvan I, Uskokovic P. Utilization of supercritical carbon dioxide for development of antibacterial surgical sutures. J Supercrit Fluid. 2022;181:105490.

12.       Barac N, Barcelo E, Stojanovic D, Milovanovic S, Uskokovic P, Gane P, et al. Modification of CaCO3 and CaCO3 pin-coated cellulose paper under supercritical carbon dioxide–ethanol mixture for enhanced NO2 capture. Environ Sci Pollut Res. 2022;29(8):11707–17.

13.       Milovanovic S, Djuris J, Dapčević A, Skoric ML, Medarevic D, Pavlović SM, et al. Preparation of floating polymer-valsartan delivery systems using supercritical CO2. J Polym Res. 2021;28:74.

14.       Djuris J, Milovanovic S, Medarevic D, Dobricic V, Dapčević A, Ibric S. Selection of the suitable polymer for supercritical fluid assisted preparation of carvedilol solid dispersions. Int J Pharm. 2019;554:190–200.

15.       Milovanovic S, Djuris J, Dapčević A, Medarevic D, Ibric S, Zizovic I. Soluplus®, Eudragit®, HPMC-AS foams and solid dispersions for enhancement of Carvedilol dissolution rate prepared by a supercritical CO2 process. Polym Test. 2019;76:54–64.

16.       Marković D, Milovanović S, Radovanović Ž, Zizovic I, Šaponjić Z, Radetić M. Floating photocatalyst based on poly(ε-caprolactone) foam and TiO2 nanoparticles for removal of textile dyes. Fibers Polym. 2018;19(6):1219–27.

17.       Krivokapić J, Ivanović J, Krkobabić M, Arsenijević J, Ibrić S. Supercritical fluid impregnation of microcrystalline cellulose derived from the agricultural waste with ibuprofen. Sustain Chem Pharm. 2021;21:100447.

18.       Obaidat R, Aleih H, Mashaqbeh H, Altaani B, Alsmadi MM, Alnaief M. Development and evaluation of cocoa butter taste masked ibuprofen using supercritical carbon dioxide. AAPS PharmSciTech. 2021;22:106.

19.       Obaidat RM, Khanfar M, Ghanma R. A comparative solubility enhancement study of cefixime trihydrate using different dispersion techniques. AAPS PharmSciTech. 2019;20:1–13.

20.       Sethia S, Squillante E. Physicochemical characterization of solid dispersions of carbamazepine formulated by supercritical carbon dioxide and conventional solvent evaporation method. J Pharm Sci. 2002;91:1948–57.

21.       Antosik-Rogoz A, Szafraniec-Szczesny J, Chmiel K, Knapik-Kowalczuk J, Kurek M, Gawlak K, et al. How does the CO2 in supercritical state affect the properties of drug-polymer systems, dissolution performance and characteristics of tablets containing bicalutamide? Materials. 2020;13:2848.

22.       Fages J, Lochard H, Letourneau J, Sauceau M, Rodier E. Particle generation for pharmaceutical applications using supercritical fluid technology. Powder Technol. 2004;141(3):219–26.

23.       Nandi U, Ajiboye AL, Patel P, Douroumis D, Trivedi V. Preparation of solid dispersions of simvastatin and soluplus using a single-step organic solvent-free supercritical fluid process for the drug solubility and dissolution rate enhancement. Pharmaceuticals. 2021;14:846.

24.       Obaidat RM, Tashtoush BM, Awad AA, Al Bustami RT. Using supercritical fluid technology (SFT) in preparation of tacrolimus solid dispersions. AAPS PharmSciTech. 2016;18:481–93.

25.       Alsmadi MM, AL-Daoud NM, Obaidat RM, Abu-Farsakh NA. Enhancing atorvastatin in vivo oral bioavailability in the presence of inflammatory bowel disease and irritable bowel syndrome using supercritical fluid technology guided by wbPBPK modeling in rat and human. AAPS PharmSciTech. 2022;23:148.

26.       Rodier É, Lochard H, Sauceau M, Letourneau J, Freiss B, Fages J. A three step supercritical process to improve the dissolution rate of Eflucimibe. Eur J Pharm Sci. 2005;26:184–93.

27.       Riekes MK, Caon T, da Silva J, Sordi R, Kuminek G, Bernardi LS, et al. Enhanced hypotensive effect of nimodipine solid dispersions produced by supercritical CO2 drying. Powder Technol. 2015;278:204–10.

28.       Milovanovic S, Stamenic M, Markovic D, Radetic M, Zizovic I. Solubility of thymol in supercritical carbon dioxide and its impregnation on cotton gauze. J Supercrit Fluid. 2013;84:173–81.

29.       Milovanovic S, Stamenic M, Markovic D, Ivanovic J, Zizovic I. Supercritical impregnation of cellulose acetate with thymol. J Supercrit Fluid. 2015;97.

30.       Milovanovic S, Markovic D, Mrakovic A, Kuska R, Zizovic I, Frerich S, et al. Supercritical CO2- assisted production of PLA and PLGA foams for controlled thymol release. Mater Sci Eng C. 2019;99:394–404.

31.       Alsmadi MM, Obaidat RM, Alnaief M, Albiss BA, Hailat N. Development, in vitro characterization, and in vivo toxicity evaluation of chitosan-alginate nanoporous carriers loaded with cisplatin for lung cancer treatment. AAPS PharmSciTech. 2020;21:191.

32.       Ongkasin K, Masmoudi Y, Wertheimer CM, Hillenmayer A, Eibl-Lindner KH, Badens E. Supercritical fluid technology for the development of innovative ophthalmic medical devices: Drug loaded intraocular lenses to mitigate posterior capsule opacification. Eur J Pharm Biopharm. 2020;149:248–56.

33.       Bouledjouidja A, Masmoudi Y, Sergent M, Trivedi V, Meniai A, Badens E. Drug loading of foldable commercial intraocular lenses using supercritical impregnation. Int J Pharm. 2016;500:85–99.

34.       Franco P, De Marco I. Contact lenses as ophthalmic drug delivery systems: A review. Polymers. 2021;13:1102.

35.       Champeau M, Trindade I, Thomassin J, Tassaing T, Jérôme C. Tuning the release profile of ketoprofen from poly(L-lactic acid ) suture using supercritical CO2 impregnation process. J Drug Deliv Sci Technol. 2020;55:101468.

36.       Cabezas LI, Fernández V, Mazarro R, Gracia I, De Lucas A, Rodríguez JF. Production of biodegradable porous scaffolds impregnated with indomethacin in supercritical CO2. J Supercrit Fluid. 2012;63:155–60.

37.       Álvarez I, Gutiérrez C, Rodríguez JF, De Lucas A, García MT. Production of drug-releasing biodegradable microporous scaffold impregnated with gemcitabine using a CO2 foaming process. J CO2 Utiliz. 2020;41:101227.

38.       García-González CA, Smirnova I. Use of supercritical fluid technology for the production of tailor-made aerogel particles for delivery systems. J Supercrit Fluid. 2013;79:152–8.

39.       Lovskaya DD, Lebedev AE, Menshutina NV. Aerogels as drug delivery systems: In vitro and in vivo evaluations. J Supercrit Fluid. 2015;106:115–21.

40.       Mehling T, Smirnova I, Guenther U, Neubert RHH. Polysaccharide-based aerogels as drug carriers. J Non Cryst Solids. 2009;355:2472–9.

41.       Wei S, Ching YC, Chuah CH. Synthesis of chitosan aerogels as promising carriers for drug delivery: A review. Carbohydr Polym. 2020;231:115744.

42.       Verano Naranjo L, Cejudo Bastante C, Casas Cardoso L, Mantell Serrano C, Martínez de la Ossa Fernández EJ. Supercritical impregnation of ketoprofen into polylactic acid for biomedical application: Analysis and modeling of the release kinetic. Polymers. 2021;13(12).

43.       Champeau M, Coutinho IT, Thomassin JM, Tassaing T, Jérôme C. Tuning the release profile of ketoprofen from poly(L-lactic acid) suture using supercritical CO2 impregnation process. J Drug Deliv Sci Technol. 2020;55:101468.

44.       Chen W, Hu X, Hong Y, Su Y, Wang H, Li J. Ibuprofen nanoparticles prepared by a PGSSTM-based method. Powder Technol. 2013;245:241–50.

45.       Sampaio de Sousa AR, Simplício AL, de Sousa HC, Duarte CMM. Preparation of glyceryl monostearate-based particles by PGSS®-Application to caffeine. J Supercrit Fluid. 2007;43:120–5.

46.       Uchida H, Nishijima M, Sano K, Demoto K, Sakabe J, Shimoyama Y. Production of theophylline nanoparticles using rapid expansion of supercritical solutions with a solid cosolvent (RESS-SC) technique. J Supercrit Fluid.  2015;105:128–35.

47.       Sodeifian G, Sajadian SA, Daneshyan S. Preparation of Aprepitant nanoparticles (efficient drug for coping with the effects of cancer treatment) by rapid expansion of supercritical solution with solid cosolvent (RESS-SC). J Supercrit Fluid.  2018;140:72–84.

48.       Franco P, De Marco I. Preparation of non-steroidal anti-inflammatory drug/β-cyclodextrin inclusion complexes by supercritical antisolvent process. J CO2 Utiliz. 2021;44:101397.

49.       Kravanja G, Knez Ž, Kotnik P, Ljubec B, Knez Hrnčič M. Formulation of nimodipine, fenofibrate, and o-vanillin with Brij S100 and PEG 4000 using the PGSSTM process. J Supercrit Fluid. 2018;135:245–53.

50.       Islam T, Al Ragib A, Ferdosh S, Uddin ABMH, Haque Akanda MJ, Mia MAR, et al. Development of nanoparticles for pharmaceutical preparations using supercritical techniques. Chem Eng Commun. 2021;1–22.

51.       Misra SK, Pathak K. Supercritical fluid technology for solubilization of poorly water soluble drugs via micro- and naonosized particle generation. ADMET and DMPK. 2020;8:355–74.

52.       Reverchon E, Pallado P. Hydrodynamic modeling of the RESS process. J. Supercrit Fluid. 1996;9:216–21.

53.       Weidner E. High pressure micronization for food applications. J Supercrit Fluid. 2009;47:556–65.

54.       Türk M, Bolten D. Polymorphic properties of micronized mefenamic acid, nabumetone, paracetamol and tolbutamide produced by rapid expansion of supercritical solutions (RESS). J Supercrit Fluid. 2016;116:239–50.

55.       Ksibi H, Subra P. Powder coprecipitation by the RESS process. Adv Powder Technol. 1996;7:21–8.

56.       Liu Y, Wu X, Liu Y, Yi J. Determination on solubility and RESS of risocaine. Adv Mater Res. 2012;550–553:1014–25.

57.       Paisana MC, Müllers KC, Wahl MA, Pinto JF. Production and stabilization of olanzapine nanoparticles by rapid expansion of supercritical solutions (RESS). J Supercrit Fluid. 2016;109:124–33.

58.       Rossmann M, Braeuer A, Schluecker E. Supercritical antisolvent micronization of PVP and ibuprofen sodium towards tailored solid dispersions. J Supercrit Fluid. 2014;89:16–27.

59.       Park J, Cho W, Kang H, Lee BBJ, Kim TS, Hwang SJ. Effect of operating parameters on PVP/tadalafil solid dispersions prepared using supercritical anti-solvent process. J Supercrit Fluid. 2014;90:126–33.

60.       Adeli E. A comparative evaluation between utilizing SAS supercritical fluid technique and solvent evaporation method in preparation of Azithromycin solid dispersions for dissolution rate enhancement. J Supercrit Fluid. 2014;87:9–21.

61.       Kim MS, Kim JS, Park HJ, Cho WK, Cha KH, Hwang SJ. Enhanced bioavailability of sirolimus via preparation of solid dispersion nanoparticles using a supercritical antisolvent process. Int J Nanomed. 2011;6:2997–3009.

62.       Yin X, Daintree LS, Ding S, Ledger DM, Wang B, Zhao W, et al. Itraconazole solid dispersion prepared by a supercritical fluid technique: Preparation, in vitro characterization, and bioavailability in beagle dogs. Drug Des Devel Ther. 2015;9:2801–10.

63.       Liu G, Gong L, Zhang J, Wu Z, Deng H, Deng S. Development of nimesulide amorphous solid dispersions via supercritical anti-solvent process for dissolution enhancement. Eur J Pharm Sci. 2020;152:105457.

64.       Petermann M. Supercritical fluid-assisted sprays for particle generation. J Supercrit Fluid. 2018;134:234–43.

65.       Weidner E, Knez Z, Novak Z. A process and equipment for production and fractionation of fine particles from gas saturated solutions. World Patent WO 95/21688, 1994.

66.       Wollenweber L, Kareth S, Petermann M. Polymorphic transition of lipid particles obtained with the PGSS process for pharmaceutical applications. J Supercrit Fluid. 2018;132:99–104.

67.       Ono K, Sakai H, Tokunaga S, Sharmin T, Aida TM, Mishima K. Encapsulation of lactoferrin for sustained release using particles from gas-saturated solutions. Processes. 2021;9:73.

68.       Tokunaga S, Ono K, Ito S, Sharmin T, Kato T, Irie K, et al. Microencapsulation of drug with enteric polymer Eudragit L100 for controlled release using the particles from gas saturated solutions (PGSS) process. J Supercrit Fluid. 2021;167:105044.

69.       Akolade JO, Balogun M, Swanepoel A, Ibrahim RB, Yusuf AA, Labuschagne P. Microencapsulation of eucalyptol in polyethylene glycol and polycaprolactone using particles from gas-saturated solutions. RSC Advances. 2019;9:34039.

70.       Ndayishimiye J, Chun BS. Formation, characterization and release behavior of citrus oil-polymer microparticles using particles from gas saturated solutions (PGSS) process. J Ind Eng Chem. 2018;63:201–7.

71.       Roda A, Santos F, Matias AA, Paiva A, Duarte ARC. Design and processing of drug delivery formulations of therapeutic deep eutectic systems for tuberculosis. J Supercrit Fluid. 2020;161:104826.

72.       López-Iglesias C, López ER, Fernández J, Landin M, García-González CA. Modeling of the production of lipid microparticles using PGSS® technique. Molecules. 2020;25:4927.

73.       Silva JM, Akkache S, Araújo AC, Masmoudi Y, Reis RL, Badens E, et al. Development of innovative medical devices by dispersing fatty acid eutectic blend on gauzes using supercritical particle generation processes. Mater Sci Eng C. 2019;99:599–610.

74.       Akolade JO, Nasir-Naeem KO, Swanepoel A, Yusuf AA, Balogun M, Labuschagne P. CO2-assisted production of polyethylene glycol/lauric acid microparticles for extended release of Citrus aurantifolia essential oil. J CO2 Utiliz. 2020;38:375–84.

75.       Haq M, Chun BS. Microencapsulation of omega-3 polyunsaturated fatty acids and astaxanthin-rich salmon oil using particles from gas saturated solutions (PGSS) process. Lwt. 2018;92:523–30.

76.       Aredo V, Bittencourt GM, Pallone EM de JA, Guimarães FEC, Oliveira AL de. Formation of edible oil-loaded beeswax microparticles using PGSS – Particles from Gas-Saturated Solutions. J Supercrit Fluid. 2021;169:105106.

77.       Klettenhammer S, Ferrentino G, Zendehbad HS, Morozova K, Scampicchio M. Microencapsulation of linseed oil enriched with carrot pomace extracts using Particles from Gas Saturated Solutions (PGSS) process. J Food Eng. 2022;312:110746.

78.       Lee S-C, Surendhiran D, Chun B-S. Extraction and encapsulation of squalene-rich cod liver oil using supercritical CO2 process for enhanced oxidative stability. J CO2 Utiliz. 2022;62:102104.

79.       Melgosa R, Benito-Román Ó, Sanz MT, de Paz E, Beltrán S. Omega–3 encapsulation by PGSS-drying and conventional drying methods. Particle characterization and oxidative stability. Food Chem. 2019;270:138–48.

80.       Pestieau A, Krier F, Lebrun P, Brouwers A, Streel B, Evrard B. Optimization of a PGSS (particles from gas saturated solutions) process for a fenofibrate lipid-based solid dispersion formulation. Int J Pharm. 2015;485:295–305.

81.       Senčar-Božič P, Srčič S, Knez Ž, Kerč J. Improvement of nifedipine dissolution characteristics using supercritical CO2. Int J Pharm. 1997;148:123–30.

82.       García-González CA, Argemí A, Sousa ARS De, Duarte CMM, Saurina J, Domingo C. Encapsulation efficiency of solid lipid hybrid particles prepared using the PGSS® technique and loaded with different polarity active agents. J Supercrit Fluid. 2010;54:342–7.

83.       Fraile M, Martín Á, Deodato D, Rodriguez-Rojo S, Nogueira ID, Simplício AL, et al. Production of new hybrid systems for drug delivery by PGSS (Particles from Gas Saturated Solutions) process. J Supercrit Fluid. 2013;81:226–35.

84.       Badens E, Masmoudi Y, Mouahid A, Crampon C. Current situation and perspectives in drug formulation by using supercritical fluid technology. J Supercrit Fluid. 2018;134:274–83.

85.       De Marco I. The supercritical antisolvent precipitation from a sustainable perspective: A Life Cycle Assessment. J CO2 Utiliz. 2022;55:101808.

86.       Altaani B, Obaidat R, Malkawi W. Enhancement of dissolution of atorvastatin through preparation of polymeric solid dispersions using supercritical fluid technology. Res Pharm Sci. 2020;15:123–36.

87.       Han F, Zhang W, Wang Y, Xi Z, Chen L, Li S, et al. Applying supercritical fluid technology to prepare ibuprofen solid dispersions with improved oral bioavailability. Pharmaceutics. 2019;11:67.

88.       Meneses L, Craveiro R, Jesus AR, Reis MAM, Freitas F, Paiva A. Supercritical CO2 assisted impregnation of ibuprofen on medium-chain-length polyhydroxyalkanoates (mcl-PHA). Molecules. 2021;26:4772.

89.       Coutinho IT, Maia-Obi LP, Champeau M. Aspirin-loaded polymeric films for drug delivery systems: Comparison between soaking and supercritical CO2 impregnation. Pharmaceutics. 2021;13:824.

90.       Ameri A, Sodeifian G, Sajadian SA. Lansoprazole loading of polymers by supercritical carbon dioxide impregnation: Impacts of process parameters. J Supercrit Fluid. 2020;164:104892.

91.       Fathi M, Sodeifian G, Sajadian SA. Experimental study of ketoconazole impregnation into polyvinyl pyrrolidone and hydroxyl propyl methyl cellulose using supercritical carbon dioxide: Process optimization. J Supercrit Fluid. 2022;188:105674.

92.       Tran BN, Van Pham Q, Tran BT, Thien Le G, Dao AH, Tran TH, et al. Supercritical CO2 impregnation approach for enhancing dissolution of fenofibrate by adsorption onto high-surface area carriers. J Supercrit Fluid. 2022;184:105584.

93.       Sodeifian G, Sajadian SA, Derakhsheshpour R. CO2 utilization as a supercritical solvent and supercritical antisolvent in production of sertraline hydrochloride nanoparticles. J CO2 Utiliz. 2022;55:101799.

94.       Sodeifian G, Sajadian SA. Solubility measurement and preparation of nanoparticles of an anticancer drug (Letrozole) using rapid expansion of supercritical solutions with solid cosolvent (RESS-SC). J Supercrit Fluid. 2018;133:239–52.

95.       Sakabe J, Uchida H. Nanoparticle size control of theophylline using rapid expansion of supercritical solutions (RESS) technique. Adv Powder Technol. 2022;33:103413.

96.       Chen BQ, Kankala RK, Wang S Bin, Chen AZ. Continuous nanonization of lonidamine by modified-rapid expansion of supercritical solution process. J Supercrit Fluid. 2018;133:486–93.

97.       Jang MK, Kim YH, Kim DW, Lee SY, Lim KT. A green preparation of drug loaded PAc-β-CD nanoparticles from supercritical fluid. Clean Technol. 2020;26:1–6.

98.       Valor D, Montes A, Fernández P, Paullada-salmerón JA, Pereyra C, Muñoz-cueto JA. Generation of GnIH hormone/pluronic F-127 systems by supercritical antisolvent process. Chem Eng Trans. 2022;93:289–94.

99.       Remiro P de FR, Rosa P de TV, Moraes ÂM. Effect of process variables on imiquimod micronization using a supercritical antisolvent (SAS) precipitation technique. J Supercrit Fluid. 2022;181:105500.

100.   Park H, Jin Seo H, Hong SH, Ha ES, Lee S, Kim JS, et al. Characterization and therapeutic efficacy evaluation of glimepiride and L-arginine co-amorphous formulation prepared by supercritical antisolvent process: Influence of molar ratio and preparation methods. Int J Pharm. 2020;581:119232.

101.   Cuadra IA, Cabañas A, Cheda JAR, Türk M, Pando C. Cocrystallization of the anticancer drug 5-fluorouracil and coformers urea, thiourea or pyrazinamide using supercritical CO2 as an antisolvent (SAS) and as a solvent (CSS). J Supercrit Fluid. 2020;160:104813.

102.   Cuadra IA, Zahran F, Martín D, Cabañas A, Pando C. Preparation of 5-fluorouracil microparticles and 5-fluorouracil/poly(L-lactide) composites by a supercritical CO2 antisolvent process. J Supercrit Fluid. 2019;143:64–71.

103.   Sun J, Hong H, Zhu N, Han L, Suo Q. Response surface methodology to optimize the preparation of tosufloxacin tosylate/hydroxypropyl-β-cyclodextrin inclusion complex by supercritical antisolvent process. J Mol Struct. 2019;1198:126939.

104.   Valarini Junior O, Reitz Cardoso FA, MacHado Giufrida W, De Souza MF, Cardozo-Filho L. Production and computational fluid dynamics-based modeling of PMMA nanoparticles impregnated with ivermectin by a supercritical antisolvent process. J CO2 Utiliz. 2020;35:47–58.

105.   Chen LF, Xu PY, Fu CP, Kankala RK, Chen AZ, Wang SB. Fabrication of supercritical antisolvent (SAS) process-assisted fisetin-encapsulated poly (vinyl pyrrolidone) (PVP) nanocomposites for improved anticancer therapy. Nanomaterials. 2020;10:322.

106.   Franco P, De Marco I. Controlled-release antihistamines using supercritical antisolvent process. J Supercrit Fluid. 2021;171:105201.

107.   Franco P, Reverchon E, De Marco I. Zein/diclofenac sodium coprecipitation at micrometric and nanometric range by supercritical antisolvent processing. J CO2 Utiliz. 2018;27:366–73.

108.   López-Iglesias C, Quílez C, Barros J, Velasco D, Alvarez-Lorenzo C, Jorcano JL, et al. Lidocaine-loaded solid lipid microparticles (SLMPS) produced from gas-saturated solutions for wound applications. Pharmaceutics. 2020;12:870.

Review articles